
1 Named Entity Recognition (NER)

A named entity refers to a sequence of words that correspond to a specific entity in the real world.1

Goal: Find (1) and Classify (2) entities in the text. Consider this example:2

1. The body of Julián Carillo, a member of the Alianza Sierra Madre organisation, was found with multiple bullet
wounds in the mountains of Chihuahua state on the evening of 24 October. He was killed a few weeks after his
community of Coloradas de la Virgen registered opposition to a mining concession that they say was located
in their territory without their permission, according to Amnesty International.

2. The body of 〈Person〉 Julián Carillo 〈/Person〉, a member of the 〈Organization〉 Alianza Sierra Madre
〈/Organization〉 organisation, was found with multiple bullet wounds in the mountains of 〈Location〉 Chi-
huahua state 〈/Location〉 on the evening of 〈Date〉 24 October 〈/Date〉. 〈Person〉 He 〈/Person〉 was killed a
few weeks after his community of 〈Location〉 Coloradas de la Virgen 〈/Location〉 registered opposition to a min-
ing concession that they say was located in their territory without their permission, according to 〈Organization〉
Amnesty International 〈/Organization〉.3

Question: How can we find and classify entities?
Answer: Broadly, existing models can be summarized under the umbrella of two techniques, Rule-Based Methods
and Sequence Models.

1.1 Rule-Based Methods

First each token is converted into a set of features. A non-exhaustive list of features (associated with individual
tokens) is given below:

• Surface value: The token itself constitutes the most basic feature.4

• Orthography: Characteristics such as capitalization, punctuation, or spelling.

• Parts-of-speech (POS) tags: Each token is assigned to part of a speech such as a noun, verb, adjective, adverb,
pronoun, conjunction, preposition, and article (many redefined categorizations of these basic types).

• Parsing: A parser extracts a hierarchical structure from each sentence in the form of a parse tree, in which
the lower-level subtrees group the POS tags into syntactically coherent phrases like noun (NP), verb (VP) or
preposition (PP) phrases. E.g.:

Julián Carillo︸ ︷︷ ︸
NP

was found with bullet wounds︸ ︷︷ ︸
PP︸ ︷︷ ︸

VP

• Dependency graphs/paths: A dependency graph captures the dependencies between tokens.5 For instance, the
subject and object of a verb depend on it:

foundJulián Carillo bullet wounds

ObjectSubject

• N-Grams: An n-gram is a probability distribution over a sequence of n tokens that learns the statistical
likelihood of the nth token following a sequence of n − 1 tokens. For example, a bigram (n = 2) would be
{bullet wounds}.

1Originally an entity referred to a name such as a person, location, or organization, but entities commonly also comprise for instance
dates.

2https://www.theguardian.com/environment/2018/oct/26/latest-land-defender-cements-mexicos-deadly-reputation
3Entities often comprise multiple tokens (= ”words”) → mark starting point, ending point (here ”/”), and the class/label of the entity.
4For details on Tokenization and Pre-Processing see Appendix A.1.
5Dependency graphs can be constructed much more efficiently than parse-trees.

1



Subsequently a set of ”if then” rules R = {R1...Rm} are mined from the data that take the following (general) form:

Contextual Pattern ⇒ Action

The LHS of the rule (the antecedent) is a combination of conditions (conjuncts) corresponding to features associated
with a sequence of tokens. A rule is triggered if a sequence of tokens in the text matches the logical condition in the
antecedent.6 For instance a rule can take the form:

(Dictionary-Class = Titles, Orthography = FirstCap) ⇒ Person

Automated training algorithms for rule-based systems learn from labeled training data by iteratively adding rules
that have good precision and coverage with respect to the tagged entities. E.g.:

R = {}
repeat;

Select a tagged entity E in the training data that is uncovered;

Create a rule R that covers E;

R = R∪ {R}
until no more uncovered entities;

Existing algorithms for rule-generating methods are either top-down or bottom-up.7

1.2 Sequence Models

Goal: Label each token for its entity class or ”other (O)” by making use of extracted features and observed data.
Consider the following example, where we want to find the label for Carillo at position 0 (”decision point”) of the
sequence:

-4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 ...
O O O Person ??? O O O O ORG ORG ORG ...

The body of Julián Carillo a member of the Alianza Sierra Madre ...

The features considered for labeling could be for example:

Current Token x0 Carillo
Previous Token x−1 Julián
Next Token x+1 a
Previous label y−1 Person
Previous labels y−1 − y−2 Person-O
POS (x0) Noun
POS (x−1) Noun
FirstCap (x0) True
... ....

Two common sequence models are the Maximum Entropy Markov Model and the Conditional Random Fields. While
the former classifier makes a single decision at a time on evidence from observations and previous labels, the latter
considers both, the labels occurring before and after the decision point.8

6In context of training instances, it is said that such a rule covers the training instance.
7See Appendix A.2 for details on the usually applied bottom-up rule generation.
8For more details on Maximum Entropy Markov Models see Appendix A.3.

2



2 Relationship Extraction

In our example we are interested in ”Mining-Assassinations” and would like to extract the following relation:

Mining-Assassinations
Target Julián Carillo
Location Chihuahua state
Date 24 October 20189

Company NONE

The former is a fairly complex relation, so for the sake of simplicity, we will focus on the relation:

Target-Location(Julián Carillo, Chihuahua state)

In general, relation extractors can be grouped into four categories:

1. Hand-written patterns
2. Supervised machine learning
3. Semi-supervised machine learning
4. Unsupervised machine learning

In the following we will focus on supervised and semi-supervised machine learning, as both are particularly suitable
for our purposes.

2.1 Supervised Relation Extraction

The steps in classifying relations can be summarized as follows:

1. Preliminary step: Choose set of relations to extract and the set of relevant named entities
2. Find and Label Data

(a) Choose representative corpus
(b) Label named entities
(c) Find all pairs of named entities (usually in same sentence)
(d) Build a boolian classifier that makes a ”Yes/No” decision if the two entities are related10

(e) If ”Yes”, (hand-) label the relation

3. Train a classifier on the training set

Let’s look at a specific example, where we want to extract the relation between Julián Carillo and Chihuahua state
from the sentence:

The body of Julián Carillo︸ ︷︷ ︸
Entity 1

was found with multiple bullet wounds in the mountains of Chihuahua state︸ ︷︷ ︸
Entity 2

.

First, we extract features. In particular, features extracted from within the entity are referred to as entity features,
whereas features surrounding or between the argument entities are called contextual features. A potential list of
extracted features is presented in the table on the next page.11

After extracting all features, one can choose any classifier (MaxEnt, Naive Bayes, SVM,...) that will subsequently be
trained on the training set, (tuned on the dev set) and tested on the test set. In particular, the supervised relation
extraction classifier is commonly evaluated based on the following measures:

Precision (P) =
# of correctly extracted relations

Total # of extracted relations

Recall (R) =
# of correctly extracted relations

Total # of gold relations

F1 =
2× P ×R

P + R

9Important: the text itself does not contain the year of the assassination, but it rather has to be inferred from the date of the article.
10The Steps (c)-(d) are incorporated instead of purely hand-labeling for efficiency gains.
11For a Python implementation and details of feature extraction see Section 3 and Appendix A.4.

3



Entity-Based Features
Entity1 type Person (PERS)

Entity1 headword Carillo
Entity2 type Location (LOC)

Entity2 headword state
Concatenated types PERSLOC

Bigrams in Entity1 & Entity2 {Julián Carillo, Chihuahua state}
Context (Word-based) Features

Between entity bag of words {was, found, with, multiple, bullet, wounds, in, the, mountains, of }
Words(s) before Entity1 {the, body, of}

Word(s) after Entity1 {was, found}
Words(s) before Entity2 in

Trigger words {bullet, kill, shoot, assassinate...}
Gazeteer {Country name list, Admin region name list, lakes, ...}

Syntactic Features
Basic syntactic chunk path NP → PP → VP → PP → PP → PP
(Typed-) Dependency Path Julián Carillo ←comp body ←subj found →comp bullet wounds

Summary: While one can achieve high accuracies with supervised relation extraction if the hand-labeled training
data is large enough and the test sample similar to the training data, the labeling of the training set is often too
time consuming ⇒ resort to semi-supervised relation extraction.

2.2 Semi-Supervised Relation Extraction

For the remainder of this section, let’s assume we do not have any labeled training and test set.
First, consider the case of Relation Bootstrapping. Assume that we have have a few seed tuples with information
on the names of land and environmental defenders as well as on the countries they were assassinated in:12

〈Edmilson Alves da Silva, Brazil〉
〈Cecilia Coicue, Colombia〉
〈Alejandro Nolasco Orta, Mexico〉
〈Sikhosiphi ”Bazooka” Rhadebe, South Africa〉
〈Roger Gower, Tanzania〉

The iterative algorithm of Relation Bootstrapping can be summarized as follows:

Iterate:

1. Find sentences containing these pairs. For instance grep google for the environments of the seed
tuples.

2. Look at the context between or around the pair and generalize the context to create patterns/fea-
tures. For instance:
Cecilia Coicue was assassinated in the capital of Columbia

X was assassinated in the capital of Y

Cecilia Coicue was shot the near his home in Bogota, Columbia

X was shot the near his home in Y

3. Use these patterns/features to grep for new tuples

12For further details see ”Defenders of the Earth Report: https://www.globalwitness.org/en/campaigns/environmental-
activists/defenders-earth/

4



Second, let’s turn to Distant Supervision, which combines bootstrapping with supervised learning. In specific,
instead of using just a small number of seeds, we use a large database with a large number of seed examples and
create a lot of features from these examples. Furthermore, instead of iterating, we take the extracted features and
build a supervised classifier. The distant supervision paradigm can be summarized as follows:

• Like supervised classification:

– Learn a classifier with large number of features
– that is supervised by detailed hand-created knowledge
– but does not require iteratively expanding patterns (c. Bootstrapping)

• Like unsupervised classification:

– Use very large amounts of unlabeled data
– Not sensitive to genre issues in training corpus, as it is the case for supervised classifiers

For instance, the algorithm of distantly supervised learning of relation extraction could take the form of:

1. For each relation

2. For each tuple in big database

3. Find sentences in large corpus with both entities

4. Extract frequent features/patterns (f)
(POS, entities, surface values, dependency paths, ...)

5. Train supervised classifier using thousands of fea-
tures13

Target-Location

〈Edmilson Alves da Silva, Brazil〉
〈Cecilia Coicue, Colombia〉
...

Cecilia Coicue was assassinated in the capital of
Columbia
Edmilson da Silva was murdered just near his home
in Rio de Janeiro
...

PERS was assassinated in the capital of LOC
PERS was murdered just near his home in LOC
...

P(Target-Location|f1, f2, f3, ..., f30000)

Important: In order to construct the classifier, we need both positive and negative training instances!
Finally, since there exists no gold-standard set of correct instances for the examples described above, we are not
able to calculate Precision and Recall. How can we then evaluate the performance of our semi-supervised relation
extractors?
We can calculate the approximate precision, i.e. we draw a random sample of relations from the output and check
the precision manually:

P̂ =
# of correctly extracted relations in the random sample

Total # of extracted relations in the random sample

For instance, we might draw a random sample of 100 from the top 1000 highest probability ranked relations.
Note: In the examples outlined above, it is however not possible to evaluate Recall.

13I.e, calculate the probability of ”Target-Loacation” relation at a particular datapoint conditional on all features (f1, f2, f3, ..., fn)
from a sentence.

5



3 Feature and Relation Extraction with Spacy

In this section we will look at how to extract features from text with the help of the SpaCy library in Python and
write a pattern by hand to extract the Target-Location relation. First, we investigate the tokenization, POS tags,
dependency paths and named entities for the simple example sentence:

Julián Carillo was shot in the mountains of Chihuahua state.

The code and output is presented in the following:

!pip install spacy # install spacy

!python -m spacy.en.download # download language model

# import all libraries that will be used

import spacy

import pandas as pd

from spacy import displacy

# instantiate a language model

nlp = spacy.load(’en’) # or spacy.en.English ()

# Define our example text from above

supervision_example = u"Julian Carillo was shot in the mountains of Chihuahua state."

#create a document

doc = nlp(supervision_example)

# For each token in our text doc we apply the following SpaCy methods

attrs = map(lambda token: {

"token":token

, "part of speech":token.pos_

, "Dependency" : token.dep_

, "Entity": token.ent_type_}

, doc)

# Convert the output to a DataFrame and inspect it

pd.DataFrame(list(attrs))

Dependency Entity part of speech token

compound PERSON PROPN Julián
nsubjpass PERSON PROPN Carillo
auxpass VERB was
ROOT VERB shot
prep ADP in
det DET the
pobj NOUN mountains
prep ADP of
compound PROPN Chihuahua
pobj NOUN state
punct PUNCT .

While ”Julián Carillo” was correctly identified as entity type ”PERSON”, ”Chihuahua” was not identified as an
entity and in particular as a state (”GPE”).14 This illustrates that even pre-tuned algorithms may lead to false
predictions, but we can get rid of these hick-ups by training a model for our purposes.
In the next step, it might be useful to retokenize by recognizing so called noun chunks, i.e. token spans that are
”logically connected” with each other. For example, instead of having two separate tokens ”Chihuahua” and ”state”
or ”Julián” and ”Carillo”, we would like to have one token ”Chihuahua state” and ”Julián Carillo”:

spans = list(doc.ents) + list(doc.noun_chunks)

for span in spans:

span.merge() # method to merge tokens within span

14A detailed list of POS, entity and dependency label definitions in SpaCy is provided in Appendix A.4.

6



Further, we would like to redefine the entity type for ”Chihuahua state”, so that next time the model would recognize
them correctly:

# redefine entity types for "Julian Carillo" and " Chihuahua state"

doc [6]. ent_type_ = ’GPE’

attrs = map(lambda token: {

"token":token

, "part of speech":token.pos_

, "Dependency" : token.dep_

, "Entity": token.ent_type_}

, doc)

pd.DataFrame(list(attrs))

Dependency Entity Part of Speech Token

nsubjpass PERSON PROPN Julián Carillo
auxpass VERB was
ROOT VERB shot
prep ADP in
pobj DET the mountains
prep ADP of
pobj GPE PROPN Chihuahua state
punct PUNCT .

For better a understanding of dependency paths and its interdependencies with POS tags, the dependency tree for
our example text is depicted below:

# display dependency path as a figure

displacy.render(doc , style=’dep’, jupyter = True , options = {’compact ’: True})

Finally, we will use SpaCy to extract the Target-Location relation by applying a hand-written pattern. In this
example, we require a trigger word such as ”kill”, ”assassinate”, or ”shoot” and that a person was the direct object
(”dobj”) or passive subject (”nsubjpass) of the verb. Moreover, if there exists a location of any kind (”LOC”,
”GDP”), we require that the location is a proper noun (”PROPN”).

def target_location_relation(doc):

columns = [’Target ’, ’Location ’]

df = pd.DataFrame(columns=columns)

count = -1

for token in doc:

if token.lemma_ == ’shoot’ or ’kill’ or ’assassinate ’:

for child in token.children:

if child.dep_ == ’nsubjpass ’ or ’dobj’:

if child.ent_type_ ==’PERSON ’:

df = df.append ({’Target ’: child}, ignore_index=True)

count += 1

if child.dep_ == "pobj":

if child.ent_type == "LOC" or "GDP":

if child.pos_ == "PROPN":

df.at[count , ’Location ’] = child

return(df)

target_location_relation(doc)

7



Target Location

Julián Carillo Chihuahua state

In reality, we would need to think of further and more specific restrictions to filter out the events of interest in a large
text corpus (for instance millions of newspaper articles). However, it is near to impossible to think of all potential
cases and exceptions. Hence, it is necessary to apply the machine learning techniques outlined in Section 2 to extract
the appropriate patterns.

8



A Appendix

A.1 Tokenization and Pre-Processing

A token is a contiguous sequence of characters with a semantic meaning that allows for repetitions, whereby no
additional processing, e.g. stemming (s. below), has been done.
Tokens can subsequently be transformed into terms (with specific frequencies). Intuition: Highly frequent tokens
are (often) not discriminative → the following (common) ”tools” are applied:

• Stop-word removal or inverse document frequency normalization.

• Case folding, i.e. process of converting to the true case (”truecasing”).

• Hpyhens, i.e. dictionaries of commonly adjacent words that (1) should be hyphenated and (2) should not be
hyphenated.

• Usage-based Consolidation, i.e. common spelling differences such as ”color” and ”colour”

• Stemming process of consolidating related words with the same root. Common techniques are Semmi-automatic
look-up tables, lemmatization, (suffix stripping).

A.2 Bottom-Up Rule Generation

Bottom-up rule generation methods start with very specific rules and then generalize it so as to allow the rule to
cover more positive examples (higher precision on the training data, but do not generalize as well to the test data).
The broad approach can be summarized as follows:

R = {}
repeat;

Select a tagged entity E in the training data that is uncovered;

Create a rule R that covers E by:

Starting with the most specific rule covering the entity

and successively generalizing this specific rule;

R = R∪ {R}
Remove instances covered by R;

until no more uncovered entities;

For instance a series of generalizations may be:

(Token = ”Ms.”, Token = ”Smith) ⇒ Person

(Token = ”Ms.”, Orthography = FirstCap) ⇒ Person

(Dictionary-Class = Titles, FirstCap) ⇒ Person

9



A.3 Maximum Entropy Markov Models

Maximum entropy Markov models directly model the probability of labeling based on the states (→ discriminative
model).
Let x̄i+q

i−q denote the segment (xi−q...xi+q) of the sequence of tokens x̄ from the (1 − q)th position to the (1 + q)th
position. Similarly, let (yi−p...yi−1) be the segment of the sequence of labels ȳ. One can now extract features from
the neighborhood of the tokens in the ith position and the history of labels (→ labels up to the (i − 1)th position
are inferred but labels including and after position i are unkown).
E.g. p = q = 1 and the token xi follows ”Ms” at xi − 1 → the binary feature f1(yi, yi−1, x̄

i+q
i−q) can be defined as:

f1(yi, yi−1, x̄
i+q
i−q) =

{
1 if [yi−1 == Person] AND [xi−1 == ”Julián”] AND [FirstCap(xi) == True]

0 otherwise

Important: An implicit restriction is placed on the probabilistic modeling of yi, i.e. it depends only on the labels
(yi−p...yi−1) occurring before, but not after yi. Note however that the tokens occurring before and after yi can be
used.

10



A.4 SpaCy Definitions

A detailed description of (universal) definitions applied in SpaCy can be found.15

Named Entities: The entity types differentiated in SpaCy are:

TYPE DESCRIPTION

PERSON People, including fictional.
NORP Nationalities or religious or political groups.
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.
PRODUCT Objects, vehicles, foods, etc. (Not services.)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK OF ART Titles of books, songs, etc.
LAW Named documents made into laws.
LANGUAGE Any named language.
DATE Absolute or relative dates or periods.
TIME Times smaller than a day.
PERCENT Percentage, including ”%”.
MONEY Monetary values, including unit.
QUANTITY Measurements, as of weight or distance.
ORDINAL ”first”, ”second”, etc.
CARDINAL Numerals that do not fall under another type.

Part-of-Speech: The universal (language independent) part-of-speech (POS) tags are listed below:

POS DESCRIPTION EXAMPLES

ADJ adjective big, old, green, incomprehensible, first
ADP adposition in, to, during
ADV adverb very, tomorrow, down, where, there
AUX auxiliary is, has (done), will (do), should (do)
CONJ conjunction and, or, but
CCONJ coordinating conjunction and, or, but
DET determiner a, an, the
INTJ interjection psst, ouch, bravo, hello
NOUN noun girl, cat, tree, air, beauty
NUM numeral 1, 2017, one, seventy-seven, IV, MMXIV
PART particle ’s, not,
PRON pronoun I, you, he, she, myself, themselves, somebody
PROPN proper noun Mary, John, London, NATO, HBO
PUNCT punctuation ., (, ), ?
SCONJ subordinating conjunction if, while, that
SYM symbol $, %, §, c©, +, −, ×, ÷, =, :)
VERB verb run, runs, running, eat, ate, eating
X other sfpksdpsxmsa
SPACE space

15An exhaustive list of universal and additionally language-specific POS and dependency label tags in SpaCy can be found here:
https://spacy.io/api/annotation

11



Dependency Labels: The universal dependency labels are defined in spacy as follows:

DEP DESCRIPTION

acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary
case case marking
cc coordinating conjunction
ccomp clausal complement
clf classifier
compound compound
conj conjunct
cop copula
csubj clausal subject
dep unspecified dependency
det determiner
discourse discourse element
dislocated dislocated elements
expl expletive
fixed fixed multiword expression
flat flat multiword expression
goeswith goes with
iobj indirect object
list list
mark marker
nmod nominal modifier
nsubj nominal subject
nummod numeric modifier
obj object
obl oblique nominal
orphan orphan
parataxis parataxis
punct punctuation
reparandum overridden disfluency
root root
vocative vocative
xcomp open clausal complement

12


