
The political economy of socioenvironmental conflict:

Evidence from Peru∗

David Kreitmeir†

Monash University

Job Market Paper

(Click here for the latest version)

January 7, 2024

Abstract

This study uses a unique and fine-grained data set on social conflict events in

Peru and exogenous variation in world mineral prices to show that a surge in pro-

jected local mineral rents increases the probability of violent confrontations between

protesters and national police. A 10% increase in the main mineral price has no ef-

fect on protester riots, but leads to a 1.9-percentage-point increase in the probability

of injuries among protesters and a 0.7-percentage-point increase in the probability

of a protester being killed. In addition, I provide suggestive evidence of political

capture of the judicial process and limited democratic accountability. Narrowly

elected pro-mining candidates are more likely to face initial investigations for cor-

ruption in office while there exists no difference in the probability of formal charges

being levied against them. I, further, show that the incumbency advantage–one

facet of accountability–is not affected by police violence during a mayor’s tenure.

Finally, I provide evidence suggestive of the efficacy of police violence in forestalling

official conflict resolution agreements that acknowledge protesters’ demands.
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1 Introduction

Over the last two decades, the blessing and curse of mineral resource endowments has

been on display in Peru. Having enjoyed an impressive mining boom since the start of

this century, with yearly mineral rents reaching up to 600 US dollars (USD) per capita,

Peru has seen a coincident rise in social conflicts related to formal mining.1 From March

2004 to December 2019, more than 386 anti-mining activists were injured and at least

41 killed in demonstrations against expropriation of local lands and allegedly inadequate

compensation for environmental damages by formal mining companies.2 This pattern is

not isolated to Peru: it is part of a worrying global trend of endemic violence against

socioenvironmental activists besetting even stable democracies such as Peru.3 However,

this form of conflict has so far received relatively little attention in the resource curse lit-

erature, which has mainly focused on armed civil conflict, particularly rebel insurgencies

fueled by natural resource rents in Africa (Berman et al., 2017; Sánchez De La Sierra,

2020) and South America (Dube and Vargas, 2013). Panel A in Figure 1 graphically illus-

trates this positive relationship between natural resource rents and armed civil conflict:

countries with above-median natural resource rents experienced more casualties related

to armed civil conflict over the 2002–2019 period. Focusing on this set of countries, Panel

B in Figure 1 juxtaposes the number of killed environmental defenders over this period

with the number of civil conflict fatalities, revealing the (relative) prevalence and severity

of socioenvironmental conflicts even in democracies.

Utilizing a unique granular data set on violence against protesters during socioenvi-

ronmental conflicts in Peru and exogenous variation in monthly world mineral prices, this

paper provides new empirical evidence on the causal relationship between mineral rents

and violence in socioenvironmental conflicts: a projected rise in local mineral rents is

estimated to increase the likelihood of both nonfatal and fatal violence against protesters

1Figure A.2 in the appendix provides a graphical illustration.
2These figures are the author’s calculations based on reports published by the Peruvian Office of the

ombudsman.
3Peru exhibited a Polity2 score (Marshall et al., 2002) of 9 (of a maximum 10 and a minimum -10)

throughout the period from 2002 to 2019. In relative terms, Peru’s Polity2 score equaled that of France
over this period and surpassed that of the United States from 2016 to 2019.
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opposing mining projects.

Peru’s institutional framework provides a unique setting to shed light on the nexus

between mineral rents and the suppression of socioenvironmental protests. Local gov-

ernments in Peru are highly dependent on central government transfers because of their

limited ability to levy and collect taxes. Two of the most lucrative transfers available

to district governments are based on local mining activity. According to a fixed alloca-

tion rule, the central government transfers 50% of income taxes collected from mining

companies and 80% of royalties to local governments in mining regions. While recent

studies have shown that this redistribution scheme can positively affect human capital

accumulation (Agüero et al., 2021) and living standards in mining districts (Loayza and

Rigolini, 2016), it can also create adverse incentives for local authorities to suppress local

opposition to mining projects. Further, in the presence of political capture, democratic

institutions might fail to align the incentives of local communities and politicians.

In this paper, I combine information on mineral production and concessions at the

district level with social conflict events to test the hypothesis that an increase in mineral

rents raises the likelihood of violence against activists during socioenvironmental protests.

My identification strategy relies on exogenous changes in world mineral prices to estimate

the effect of expected changes in mineral rents on protest suppression. I find that a spike

in mineral prices increases the probability of observing protester arrests, injuries and

deaths during confrontations with the national police (PNP). Leveraging the spatial and

temporal granularity of the data set, I conduct the analysis at the month and district level,

where the district is the third and lowest administrative level in Peru. By conditioning

on district × year fixed effects, I account for time-varying and time-invariant district

characteristics that potentially confound the estimated relationship, such as changes to

the funds available to local governments from mining revenues. I show that the estimated

relationship between mineral rents and violence against protesters cannot be explained

by more militant behavior on the side of activists. Moreover, the benchmark estimates

are robust to the exclusion of confrontations with protester violence and across numerous

sensitivity tests.

2



Having documented how changes in expected mineral rents affect the use of force

against protesters, I turn to the role of mayors, who are in charge of local security. Using

a regression discontinuity design (RDD), I test whether the election of a pro-mining as

opposed to an anti-mining candidate increases the probability of excessive force against

activists in the district and the corruption in office. For this question, I collect a new data

set on mayoral government plans published ahead of elections. Using natural language

processing (NLP) and large language models (LLMs), I label over 9,000 candidates on

basis of their revealed sentiment toward formal mining activities in published government

plans. I find suggestive evidence in support of the hypothesis that the marginal election of

a pro-mining candidate has a positive effect on police violence against protesters during

her time in office. Further, the RDD results are indicative of political capture in the

judicial process. Using information on the procedural stage of corruption cases against

former mayors, I show that pro-mining mayors have a significantly higher probability of

facing initial investigations against them as opposed to anti-mining mayors. However,

this disparity is not reflected in the probability of formal charges being levied.

In the next step, I assess how police violence affects one facet of democratic account-

ability: the incumbency advantage (de Benedictis-Kessner, 2018; Lewis et al., 2020).

Using an adjusted version of the continuity-based RDD, I show that the incumbency ad-

vantage of mayors whose term was characterized by police violence is not distinguishable

from that of mayors whose term did not experience excessive force against protesters,

suggesting that democratic accountability of local politicians is limited.

In the last part of the paper, I provide suggestive evidence for the efficacy of police

violence in dispersing protests. Exploiting unique information on the evolution of social

conflicts over time in the data set, I use a marginal structural model (MSM) framework

(Blackwell, 2014; Imai and Ratkovic, 2015) to estimate the dynamic causal effect of

violence against activists on the final outcome of the social conflict. In particular, I find

that the probability that local communities receive financial compensation, as proxied

by the signing of an official resolution agreement, decreases if excessive force is used

against protesters. I show that the effect is qualitatively robust across different estimation
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algorithms and models.

This study relates to various strands of the literature. By moving the focus from armed

conflict over the appropriation of natural resources to socioenvironmental conflict, the

study contributes to the rich empirical literature on the nexus between natural resource

abundance and local conflict (Dube and Vargas, 2013; Berman et al., 2017; Sánchez

De La Sierra, 2020, among others). Using exogenous variation in world mineral prices,

Berman et al. (2017) show that a surge in mineral rents increases the probability of conflict

at the local level in Africa. The authors highlight the importance of mineral resources

in financing insurgency activities of rebel groups. The central role of revenues from

natural resource extraction is underlined in recent work by Sánchez De La Sierra (2020),

who documents that rebel groups in the Democratic Republic of the Congo establish

quasi-states around mines. Along the same lines, Dube and Vargas (2013) show that

positive oil price shocks increase paramilitary attacks in oil-producing municipalities.

I complement the existing results by presenting new empirical evidence on the causal

relationship between mineral rents and the violent suppression of socioenvironmental

protests against local mining projects.

The state suppression of opposition to industrial mining projects under investigation

more broadly speaks to theoretical work on the role of civil society in constraining an

otherwise overreaching state (Acemoglu and Robinson, 2020) and the thesis that large

global corporations should be viewed as “state-like” entities dominating the political

decision process through its unchecked economic power (Zingales, 2017).

The study’s results also align with findings from a growing strand of literature that

has started to explore the determinants of social conflict and related violence (Haslam

and Ary Tanimoune, 2016; Castellares et al., 2017; Butt et al., 2019; Sexton, 2020; Grasse,

2022). Haslam and Ary Tanimoune (2016) combine information on the location of min-

ing properties in South America and hand-coded data on social conflicts to provide the

first solid empirical foundation for the hypothesized causes of social conflict, which, until

their work, had been based on qualitative findings and case-study evidence (e.g., Bebbing-

ton et al., 2008; Arellano-Yanguas, 2011; Arce, 2014). The authors find that economic
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grievances in local communities and property characteristics, such as foreign ownership,

are positively correlated with the emergence of social conflicts. A more recent literature

has started to address the issue of causal identification. Grasse (2022) shows that palm

oil price shocks lead to more confrontations between current landowners and prospective

producers in Indonesia. Sexton (2020) documents that a surge in mineral prices leads to

more social conflict incidents related to highly visible pollution in Peruvian departments

but not for less observable environmental degradation. The present study augments these

findings by utilizing the spatial and temporal granularity of the data to causally identify

the effect of changes in mineral rents on local social conflicts by relying exclusively on

within-district–year variation. Detailed information on protest events, moreover, allows

me to discern whether the violence against activists is the result of more militant behavior

on the side of activists or is indeed generated by excessive use of force by the police.

This paper also contributes to the literature on the redistribution of natural resource

rents and the effect of mining activity on local communities and politics. For the case

of Peru’s canon minero—a fiscal transfer scheme of mining revenues—Maldonado and

Ardanaz (2022) document a positive but nonmonotonic effect of additional funds in the

hands of local governments on human capital accumulation, while Loayza and Rigolini

(2016) and Aragón and Rud (2013) document improvements in the standard of living

for local communities. On the other hand, the literature has found the canon minero to

be associated with higher levels of corruption (Maldonado, 2011) and inefficient use of

public funds (Maldonado, 2017). This is in line with the finding of Baragwanath Vogel

(2021) that windfall gains in oil-producing municipalities in Brazil lead to higher levels

of corruption. An increase in local corruption with the advent of local mining activity

is, moreover, documented by Knutsen et al. (2017) for Africa. For India, Asher and

Novosad (2023) show that local mining booms increase criminal politicians’ likelihood of

being elected and committing crimes in office. The present paper’s results dovetail with

this work on the adverse effects of mining activity on local communities, highlighting

violence against activists as an important negative externality. Furthermore, the paper

provides evidence of political capture of the judicial process in relation to mining activity.
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Finally, the paper makes a methodological contribution. To the best of my knowledge,

it is the first to use the marginal structural model (MSM) framework to causally identify

how violence affects the outcome of conflicts. The model, originally developed by Robins

et al. (2000), was introduced to the social sciences by Blackwell (2014). Using this

empirical framework, he was able to identify a causal effect of negative campaigns in

the lead-up to U.S. elections on the vote share. The method has since been applied and

refined by, among others, Imai and Ratkovic (2015), Montgomery and Olivella (2018),

and Bodory et al. (2022).

2 Mineral Rents and Social Conflict Violence

2.1 Institutional Framework

Peru has three administrative levels, with groups of districts (distritos) forming provinces

(provincias) and groups of provinces forming regions (departamentos). In 2001, as part

of a fiscal decentralization reform, the national government implemented a fiscal transfer

scheme—the so-called canon minero—which distributes 50% of the income taxes collected

from mining corporations back to local governments according to a fixed allocation rule.

In particular, since the enactment of of Law No. 28327 in 2004, 10% of this amount is

directly distributed to producing districts; 20% of the amount is shared among all dis-

tricts in a producing province, and 40% is distributed among all districts in a producing

region. In addition, Law No. 28258 in 2004 established that 20% of the collected mining

royalties are directly transferred to the district(s) where the mining concession is located,

20% are distributed among districts in the province of the mining concession, and 40%

are allocated to districts in the region of the concession.4 Table A.2 in the appendix

presents summary statistics for the amount of total revenues in real 2010 USD received

by districts from either the canon minero or royalties over the period 2004 to 2020. Addi-

tionally, the total revenues are disaggregated by district category, i.e., whether a district

4With the exception of the 10% of the canon minero and the 20% of the mining royalties directly
transferred to districts, the exact allocation of canon transfers and royalties to districts is determined by
social and economic characteristics in the respective district.
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had mining production, only concessions but no active production, or neither during the

sample period. Table A.2 illustrates the favorable position of mineral-producing districts

and the substantial financial incentives for local governments to attract mining projects.

In particular, local governments are highly dependent on fiscal transfers from the central

government, with the share of the canon minero accounting for approximately 29% of

local governments’ budgets and as much as 70% of those of producing districts (Canavire-

Bacarreza et al., 2012; Maldonado and Ardanaz, 2022).5 While the use of funds received

from the canon minero or royalties is tied to specified objectives, the limited impact of

transfers on living standards has been connected to corruption and unproductive but

politically favorable investments in local infrastructure and public employment (Maldon-

ado, 2011; Crabtree, 2014; Maldonado, 2017). In particular, the electoral system, which

grants the elected mayor 50%-plus-one seats in the district council independent of the

election results, has severely limited political accountability in the absence of a strong

civil society (Maldonado, 2011; Crabtree, 2014).

2.2 Data

2.2.1 Social Conflicts

For this study, I construct a unique data set of social conflicts related to mining projects

in Peru based on reports by the Office of the ombudsman (Defensoŕıa del Pueblo), hence-

forth referred to as “the ombudsman.”6 Since April 2004, the ombudsman has published

monthly reports on social conflicts in Peru. These reports follow a fairly uniform format,

which enables me to identify and track developments of individual social conflicts over

time. In particular, each report entry constitutes a separate social conflict and contains

the following key information: type of social conflict, location, actors, current status (ac-

tive, latent, resolved or removed) and a description of recent events related to the conflict

5The dependence of local governments on central transfers in Peru is the result of their marginal
ability to levy and collect taxes, with self-raised revenues contributing on average only 12.5% to the local
budget (Aresti, 2016).

6Other empirical studies have used ombudsman reports for information on social conflict incidence
(Arellano-Yanguas, 2011; Haslam and Ary Tanimoune, 2016; Castellares et al., 2017; Orihuela et al.,
2019; Sexton, 2020, among others). To the best of my knowledge, no studies so far, however, have used
the social conflict data at such fine-grained spatial and temporal resolution.
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if any transpired.7 An example entry is presented in Figure A.1 in the appendix.

I restrict the set of social conflicts for this study to conflicts concerning industrial

mining. Therefore, I exclude conflicts related to informal or illegal mining activities to

account for fundamental differences in the characteristics of these conflicts. In partic-

ular, the latter often take place in regions with no official mining production and—by

definition—involve actors more prone to using illegal means to secure mining rents. While

a role of local authorities as stakeholders in these illegal operations cannot be ruled out,

the concern of this study is the “visible” suppression of mining opposition by the PNP,

which operates under the direction of local governments.8 Further, I require that an

industrial mining entity be one of the primary actors in the conflict. Note that this set of

conflicts also comprises unfulfilled promises about employment for local community mem-

bers in exchange for licensing their land but excludes labor disputes about inadequate

pay, dangerous working conditions.

The baseline sample is, moreover, confined to social conflicts with location information

at the district level to identify whether and how changes in local mineral rents lead to

escalations in local anti-mining conflicts. The resulting data set is an unbalanced panel

at the conflict–month level over the March 2004 to December 2019 period, with the

first observation for each conflict being the month when the conflict first enters the

ombudsman’s register.

Further, I create an accompanying data set on protest activities against mining cor-

porations on basis of the description of recent events in the ombudsman reports. In

particular, I code the date if specified and if not the month of the protest, the location of

the event, and the number of injuries, arrests, and casualties among protesters. For cases

in which the exact number of injuries or arrests is not clearly specified, the number is

coded as one to provide a conservative estimate. I aggregate all variables to the monthly

level to match the frequency of social conflict reports and rely on binary coding of all

protest measures in the empirical analysis.

7If a conflict is inactive (latent) for an extended period of time, the ombudsman removes the case
from the register.

8In isolated instances, those confrontations can also feature private security guards.
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For the baseline analysis, I use the granular information on locations of protests

and social conflicts to construct a balanced panel of social conflicts and their associated

protests at the district–month level for the period from March 2004 to December 2019.

I supplement these data with a revised version of Kreitmeir et al.’s (2020) data set on

the killings of activists. In particular, this data set covers a longer time period from 1998

to 2020 and comprises assassinations of mining activists outside of protests that are not

covered in the ombudsman reports.

2.2.2 Mineral Production and Prices

I obtain data on monthly mineral production disaggregated by type of mineral at the

district level from the Ministry of Energy and Mining (MINEM) for the period from 2002

to 2019.9 I combine the information on mineral production with monthly world prices on

minerals provided by the World Bank. The World Bank Commodity Price Data cover

seven minerals that represent more than 99% of the total production value over this

period.10 All mineral prices are uniformly expressed as real USD per kilogram.

Following Berman et al. (2017), I determine the main mineral in a district on the

basis of its total production value over the period 2002–2019 evaluated at mineral prices

at the start of the period 2002. As an alternative price measure, I construct a weighted

price index of all minerals mined in a district, with weights equal to each mineral’s share

in total production value in the district over the 2002–2019 period.

For my baseline estimations, I additionally consider the presence of mining concessions

in a district. Data on mining claims are drawn from the SNL Mining & Metals database.

Anecdotal evidence from the ombudsman suggests that social conflicts often break out

before the production stage, when a mining concession is granted. In conjunction with

royalty revenues being based on concession location rather than production value, an

9Note that MINEM also provides production data for the year 2001. How-
ever, the data are available only at the departmental level. For more details, see:
http://www.minem.gob.pe/ estadistica.php?idSector=1&idEstadistica=12501.

10The minerals are iron, copper, lead, tin, zinc, gold, and silver. Price timelines for each of those
minerals are presented in Figure A.6 in the appendix. Price changes in the top 75th (90th) percentile
are depicted in blue (red). Note that I collect prices at the yearly level for the remainder of minerals
mined in Peru from the USGS. For more details on mineral prices, see Appendix Section A.3.
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analysis relying exclusively on mineral production might not capture the “total” effect

of changes in mineral rents on the violent suppression of activists. Figure 2 illustrates

this nexus. A substantial share of the social conflicts associated with industrial mining

are located in districts with no mineral production during the study period. However,

in many of these districts, mining concessions—visualized by white rectangular areas

framed in black—were granted during this time. Figures A.3 and A.4 in the appendix

provide analogous images for mining royalties and canon minero distributed to each

district during the 2002–2019 period. Since information on the selling price or projected

value of concessions is not available in the SNL Mining & Metals database, I determine

the main mineral for a nonproducing district on the basis of a simple count of each

concession’s primary commodity. For weighted price index, the weights are calculated

based on the primary commodity counts of each mineral for the granted concessions in

the district.

Table 1 provides descriptive statistics for the main variables of interest disaggregated

by presence of mining production or concessions. The total data set comprises 1873

districts over 18 years; 228 districts had a positive production value over the 2002–

2019 period, with 278 additional districts granting at least one mining concession. The

probability of observing the violent death of an activist or use of force against activists in

a district in a given month is between 0.01% and 0.04%. The likelihood of observing any of

these events more than quadruples when I consider only districts with mining production.

An increase in the average probability of observing protester arrests or injuries is also

observed for districts with mining concessions granted during the study period.

2.2.3 Other Data

I obtain data on canon minero and mining royalty transfers from the Ministry of Economy

and Finance (MEF).11 I convert all yearly transfer payments into real USD using the

official yearly exchange rate and MUV Index provided by the World Bank. Information

on administrative boundaries is retrieved from the National Institute of Statistics and

11The MEF makes the data publicly available through its Transparency Portal (Transparencia
Económica), which can be accessed here:https://apps5.mineco.gob.pe/transferencias/gl/default.aspx.
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Information Technology (INEI).12

2.3 Empirical Strategy

Leaning on the empirical framework in Berman et al. (2017), the baseline linear proba-

bility model (LPM) takes the form:

Ait = δ
(
Mi × ln(PW

it )
)
+X

′

itβ + γiy + ϵit, (1)

where Ait takes on the value one if a forceful action against protesters is taken by the police

force (or vice versa) in month t in district i and 0 otherwise. Mi equals one if there has

been (i) mineral production and for the baseline specification if (ii) a mining concession

was granted in district i during the period 2002–2019 and equals zero otherwise. My

use of a constant mining indicator variable accounts for potential reverse causality. In

particular, local opposition to a mining project could lead to a halt in production or the

withdrawal of the mining concession. Holding the production indicator fixed ensures that

the coefficient of interest δ is identified by exogenous movements in world mineral prices

only.

The inclusion of district × year fixed effects, γiy, accounts for time-invariant district

characteristics simultaneously affecting social conflict and local mining activity such as

property rights enforcement or historical disenfranchisement of indigenous communities.

My focusing exclusively on within-district–year variation, moreover, lets me control for

time-varying differences across districts at the yearly level, in particular economic and

budgetary changes in municipalities. PW
it denotes the world price of the main mineral in

district i. For districts with no mining production (or districts with no concessions), the

mineral price is set to zero. For my baseline estimates, the main mineral in a district is

the mineral with either the highest total production value (in 2002 USD prices) or the

highest primary commodity count among granted concessions. I test the robustness of my

results derived with the baseline price variable to my use of an alternative value-weighted

12The data can be accessed here: https://www.datosabiertos.gob.pe/dataset/resource/a43e17c8-fa37-
463d-aa7e-2ce2a272491b.
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price index. In particular, this price index is the value-weighted price of all minerals

mined in district i over the 2002–2019 period, with weights equaling the production value

in producing districts. For nonproducing concession districts, the weights are determined

on basis of the number of primary commodities of granted concessions in the district.

Additionally, I test the sensitivity of my baseline estimates to my restricting the sample

to only producing districts. Xit is a set of potential time-varying codeterminants of social

conflict that I consider in robustness checks.

Given the granularity of the data and the spatial clustering of events, the standard

errors are allowed to be spatially and temporally correlated. Specifically, I correct the

standard errors for heteroskedasticity and autocorrelation (HAC), retaining a radius of

500 km for the spatial kernel.13 I assume a linear decay in distance for the spacial

correlation for nonzero elements in the HAC matrix.14 Serial correlation is allowed to be

“unconstrained” and can span the entire sample period. I also provide robustness results

for alternative spatial radii.

2.4 Baseline Results

Table 2 presents the results for three baseline social conflict incidents involving use of force

against activists during public protests by the PNP.15 I estimate that a one-percentage-

point increase in the main mineral price increases the probability of protesters’ being

arrested by 0.04 percentage points, of their being injured by 0.19 percentage points, and

of their being killed by 0.07 percentage points. These effects are sizable. Relative to the

mean, a one-percentage-point increase in mineral prices more than doubles the probability

of my observing use of excessive force.

Having established a positive relationship between projected mineral rents and use of

force against protesters, columns 4 and 5 test whether the observed escalation of social

conflicts is indeed the result of a harsher crackdown by the PNP or can be explained

by more militant behavior on activists’ side provoking a reaction from police. While the

13The radius of 500 km is taken as it is close to the median internal distance of 540 km.
14In detail, the nonzero elements of the HAC spatial pattern matrix follow a Bartlett kernel (Colella

et al., 2023).
15In rare instances, private security guards are involved in the confrontations.
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conflicts under investigation are concerned with environmental and social issues related

to mining activity and not the appropriation of mineral resources as considered in the

civil conflict literature (Berman et al., 2017), frustrations over insufficient compensation

for environmental damage or properties might surge among protesters when the expected

rents for mining corporations and local authorities increase. To address this potential

channel, I use information on injuries and killings of police officers during demonstrations

to create a binary indicator that equals one if violence against police forces is observed

and zero if otherwise. Note that this variable could also capture acts of retaliation at the

hands of protesters in response to initial violence by police. The estimated effect might

hence overstate the impact of changes in mineral rents on protester violence.

Reassuringly, I find no evidence for an effect of mineral prices on protester violence

(column 5 in Table 2). The estimated effect, moreover, remains quantitatively stable and

insignificant if I additionally consider other forms of militant behavior such as property

destruction (column 5).

In summary, the baseline findings provide evidence for the hypothesis that a surge

in (expected) mineral rents leads to a harsher and more violent crackdown on protesters

but does not significantly affect vandalism or violence among protesters.

2.5 Robustness Checks

This subsection explores the sensitivity of the baseline results in several dimensions.

2.5.1 Omitted Variables

In the first set of robustness checks, I address concerns about potential omitted variables.

Neighborhood analysis Leaning on Berman et al. (2017), I implement a neighbor-

hood fixed effects regression model. For this specification, I define the “control set” for

each mining district as comprising the first- and second-degree neighboring nonmining

districts. Each mining district and its neighbors form a “neighborhood group,” with

the price of the main mineral in the mining district also assigned to its neighbors. I
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include neighborhood × year fixed effects to absorb any constant and time-varying code-

terminants of social conflict and mining activity across neighborhoods. Any identifying

variation in this model derives from the differential reaction to price shocks between

mining districts and their inactive neighbors.

Table 3 presents the estimates for the neighborhood fixed effects model. The estimated

probability of observing protest suppression by police forces is significantly higher in

mining districts, while no significant difference for protester violence and riots is visible.

The results are qualitatively stable when I consider the ten nearest neighbors by distance

(Table B.1 in the appendix).

Time-varying covariates In Table B.2 in the appendix, I additionally control for

district-specific factors varying at the monthly level that have been identified in the lit-

erature to be associated with conflict probability such as agricultural commodity prices

(Dube and Vargas, 2013; Berman and Couttenier, 2015; McGuirk and Burke, 2020) and

weather conditions (Hsiang et al., 2013; Harari and Ferrara, 2018). Movements in these

variables could coincide with mineral price shocks and protest incidences. First, I in-

troduce the main crop price in a district as an additional control. Following the coding

of the main mineral price, the former is the agricultural commodity in a district with

the highest production value. To calculate the total production value, I combine world

commodity prices from the World Bank with crop-specific agricultural land cover circa

2000 from the M3-Cropland project (Monfreda et al., 2008).16 The effect of crop prices

is estimated to be indistinguishable from zero, while mineral prices retain their positive

and significant coefficient. Similarly, the coefficient of interest remains statistically and

quantitatively stable with the inclusion of temperature and rainfall as controls.

2.5.2 Measurement

Section B.2 in the appendix shows that the baseline findings are robust to my considering

alternative definitions and measures of (i) the district-specific mineral price, (ii) protest

16The M3 crops data are also used by Berman and Couttenier (2015), Harari and Ferrara (2018), and
McGuirk and Burke (2020), among others.
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incidence, and (iii) mining activity.

Price index First, I investigate the robustness of the baseline results to the use of

the price of all minerals mined in a district aggregated into a price index in lieu of

the main mineral price. The price index is calculated as the weighted average price of all

mined minerals, with the time-constant weights defined as the mineral’s share of the total

production value in a district over the sample period. The robust coefficient estimates

for the alternative price measure are presented in Table B.3.

Outcomes Second, I check the sensitivity of the baseline estimates to the definition of

protest incidence. In column 1 of Table B.4, I consider not only casualties during protests

but also slayings of activists outside of protests and by unknown perpetrators. The coef-

ficient estimate remains positive but declines in magnitude and is no longer significantly

different from zero. The prolonged planning process involved in assassinations, hence,

appears to make them less susceptible to short-term price fluctuations.

Furthermore, the exclusion of events with “unconfirmed” details—i.e., incidences where

the number of injuries or arrests is not clearly stated—or months with coinciding protester

riots have little effect on the magnitude and significance of the estimated effect.

Table B.5 in the appendix presents estimates for the baseline specification when I use

the location of the social conflict associated with a protest incident in lieu of the event

location. That is, the protest incident is now coded as if it had happened in all districts

spanned by the corresponding social conflict. While this alternative outcome definition

leads to an (expected) loss of precision in the estimates, the magnitude of the effects

remains quantitatively stable.

Production districts Third, I restrict the sample to districts with at least one year

of mineral production. Districts with mining concessions but no production during the

sample period are, hence, disregarded. Table B.6 in the appendix shows that the focus on

production districts results in larger but less precisely estimated coefficients. However,

all coefficients of interest remain significant at at least the 10% level.
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2.5.3 Econometric Specification

The baseline specification uses the the log of the level of the mineral price and does not

consider potential temporal or spatial lags.

Level vs. first difference The use of price levels has evolved as the standard in

the conflict literature (Berman et al., 2017, 2019) but requires that the price series be

stationary. Unit root tests for each mineral-specific monthly price series (once purged

from their common time components) suggest that the price series are stationary, with

the exception of that of monthly gold prices, for which the null hypothesis of the presence

of a unit root marginally cannot be rejected at the 10% level (Figure B.1). To alleviate

potential misspecification concerns, I present in Tables B.7 and B.8 in Section B.3 of the

appendix the estimates for the change in the natural logarithm of the main mineral price

and the price index, respectively, from month t − 1 to t. This focus on price growth

results in qualitatively similar but less precisely estimated effects.

Temporal and spatial lags Further, allowing for spatial spillovers increases the im-

pact of mineral prices (Table B.9), whereas including temporal lags B.10 has little influ-

ence on the cumulative effect. The results align with findings on spatial lags in the civil

conflict literature (Berman et al., 2017; McGuirk and Burke, 2020; Berman et al., 2019).

2.5.4 Additional Robustness Checks

World market share A potential concern with the proposed identification strategy is

that social conflicts could impact mineral production to such an extent that they have

some influence on world prices. Table A.3 in the appendix presents in Panel A the world

share of Peruvian mineral production disaggregated by mineral and year and in Panel B

the corresponding maximum share among all districts. While Panel A confirms Peru’s

position as one of the main global mineral producers, Panel B illustrates that, with

the exception of tin, no district has a world share above 5%, making any world prices
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movements for those minerals plausibly exogenous.17 To check for the possibility that

local social conflicts affect world mineral pries, I drop all districts whose world market

share ever exceeded 1% during the sample period from 2004 to 2019 for this analysis.18

Table B.11 in the appendix shows that the coefficients are virtually unchanged from the

benchmark estimates, alleviating concerns about a potential violation of the exogeneity

assumption.

Standard errors Next, I provide robustness results for different spatial kernels. In

particular, I allow for unlimited serial correlation and spatial correlation within a radius

of up to 50 km, 100 km, 250 km, 500 km, 750 km, and 1,000 km. For both dimensions,

I assume a linear decay in distance. Table B.12 in the appendix presents standard error

estimates for these alternative levels of clustering. The estimates for protester arrests,

injuries, and deaths retain significance at the 5% level regardless of which spatial radius

is used, while the estimates for protester behavior remain indistinguishable from zero.

Multiple-hypothesis correction Finally, I address concerns that my baseline find-

ings could suffer from an overrejection of the null hypotheses as a result of reuse of

the identifying exogenous variation for multiple outcomes. I apply the Romano–Wolf

multiple-hypothesis correction procedure, described in Romano and Wolf (2005a,b, 2016)

and implemented by Clarke et al. (2020), to safeguard against false rejection of true

null hypotheses. In recent work, Heath et al. (2022) show that the employed method

performs well in a multitude of settings and across different dimensions. Table B.13 in

the appendix presents for each baseline outcome variable the original model p-value, the

resampled p-value from 500 bootstraps, and the Romano–Wolf p-value corrected for mul-

tiple hypothesis testing.19 The estimates for arrests, injuries, and the fatal use of force

against protesters remain significant at the 10% level once multiple hypothesis testing is

17The San Rafael mine is located in the district of Antauta, in the province of Melgar, in the region
of Puno.

18Applying the 1% threshold is equivalent to excluding districts in the 90th percentile of world market
share among all producing districts.

19A graphical illustration of the null distributions used to calculate the Romano–Wolf adjusted p-
values for each of the five baseline outcome variables is given in Figure B.2 in the appendix.
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explicitly controlled for, while the null hypothesis of no effect of mineral rents on protester

behavior cannot be rejected at common thresholds.

3 Mechanisms

3.1 Violence, Corruption, and Democratic Accountability

In this section, I assess the legal and democratic accountability of local politicians.

3.1.1 Data

I combine data from various sources to build a municipality–candidate-level data set.

Data on election outcomes are obtained from the National Jury of Elections (JNE)

online database Infogob. This includes the list of mayoral candidates and the results of

municipal elections for 2002, 2006, 2010, 2014, and 2018. In addition, I obtain information

on recall referenda for these five rounds of municipal elections to determine whether a

sitting mayor was recalled prior to the end of her term.

Infogob also publishes government plans (“planes de gobierno”) of candidates for each

election round, with the exception of 2010.20 These provide unique information on the

political program and ideology of mayoral candidates against the background of highly

fragmented and candidate-centered local-level politics in Peru (Bland and Chirinos, 2014;

Artiles et al., 2021).21 I scraped government plans from the website to assemble a novel

and comprehensive data set on the (stated) stance of candidates on formal mining activity.

In particular, I classify candidates based on their government plans as anti-mining, pro-

mining or neutral toward formal mining. The classification procedure can be summarized

in the following steps. First, I preprocess the documents to obtain the raw text and

use a semiautomatically derived mining keyword list to filter out passages concerned

with formal mining. All government plans that do not contain any mining keywords are

classified as “unknown.” Next, I use OpenAI’s large language modelGPT-4 to answer five

20While links to government reports for elections in 2010 are provided on the government website,
these links cannot be accessed, and the browser returns an error message (last accessed 6 October 2023).

21For instance, Artiles et al. (2021) report that, of the average 7.26 candidates running for mayor in
2014, only 36.9% ran for a national party.
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questions based on the passages extracted in the previous step to determine a candidate’s

sentiment toward formal mining. Note that a candidate’s being classified as anti-mining

does not require the candidate to oppose formal mining entirely; a focus on constraining

current mining practices or on the negative environmental impacts of mining suffices. If

the answers exhibit any inconsistencies, e.g., if the GPT-4 answers indicate a focus on

both the positive and negative impacts of mining, I feed the text back to GPT-4 with a

verification question to resolve the conflict.22 Appendix Section A.2 provides a detailed

discussion on the classification process.

Data on corruption are retrieved from the PPEDC’s 2022 report on corruption in

regional and local governments (Pacheco Palacios et al., 2022).23 Importantly, the report

not only lists cases for which a former mayor has been sentenced for crimes against public

administration (e.g., abuse of power, embezzlement, collusion, etc.) but also cases still

at the investigative stage. Following the procedural model of the PPEDC, I group cases

into three procedural stages: the early investigative stage (“investigación preparatoria”),

the second intermediate stage (“etapa intermedia”) when formal charges are brought or

dropped by the prosecutor, and the final trial stage (“juzgamiento”).24

In line with the baseline analysis, the final sample is restricted to municipalities with

mineral production or concessions during the 2002–2019 period. Moreover, the sample is

restricted to 234 mayoral races with either a pro- or an anti-mining candidate’s victory

in the election.25

22If the classification procedure returns an error at any of the stages, I resort to manual labeling of
the government plan.

23In particular, I obtain information on the procedural stage of the case, the name of the accused,
and the category of the crimes committed against public administration from Section 7 p. 209–613.

24For more details on the procedural stages, please refer to page 18 of Pacheco Palacios et al. (2022).
25While a simple pro-mining and not pro-mining candidate RDD is possible, such an analysis suffers

from the very noisy signal of governments plans that either do not discuss formal mining activity at all or
exhibit a neutral sentiment toward it. Without clearly stated preferences, government plans cannot serve
as a prediction of behavior in office. Unreported results show that the inclusion of races with marginal
losses and wins by not pro-mining candidates introduces a substantial amount of noise, resulting in
imprecise estimates.
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3.1.2 Empirical Strategy

If local authorities are indeed able to (illegally) extract rents from mining transfers and

profit from mining expansions, we should observe higher levels of corruption and violence

against mining opponents during the terms of pro-mining mayors than during the terms

of mayors who plan on restricting mining activity. However, the victory of a pro-mining

candidate is plausibly correlated with a broad range of municipality characteristics, in-

cluding the historic prevalence of corruption. In return, corruption itself might be deter-

mined by municipality characteristics. For instance, unexploited mineral reserves might

attract mining corporations willing to make illegal payments to secure a certification of

the environmental impact study required for production.

To overcome these identification challenges, I employ an RDD. Using the margin of

victory—defined as the difference between the vote percentage obtained by the first pro-

mining candidate and the first anti-mining candidate—as the running variable, I take

advantage of the discontinuity in the assignment to treatment between the victory of a

pro- as opposed to an anti-mining mayor. The treatment assignment mechanism is:

Li =


Li = 1 if xi > 0

Li = 0 if xi < 0,

(2)

where xi denotes the margin of victory of the pro-mining candidate and Li reflects the

treatment status and equals 1 if a pro-mining candidate won the election.

The corresponding regression model takes the form:

yi = δ0 + δ1Li + δ2f(xi) + δ3Li × f(xi) + ϵi, (3)

where yi represents the outcome and f(xi) is a polynomial function of the margin of

victory. Finally, ϵi denotes the idiosyncratic error term.

The coefficient of interest, δ1, captures the estimated effect of (narrowly) electing a

pro-mining candidate as opposed to an anti-mining candidate. For δ1 to be correctly

identified, two key assumptions have to be fulfilled: (1) there should be no manipulation
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around the cut-off, and (2) covariates potentially correlated with both the treatment and

outcome variables should not significantly differ around the cut-off. On the former, the

manipulation test based on density at the discontinuity as suggested by Cattaneo et al.

(2018) is presented in Figure C.1 in the appendix and provides no evidence of systematic

manipulation around the cut-off. On the latter, Table C.1 in the appendix shows that

municipality characteristics are not significantly different around the threshold except for

turnout.

I follow Cattaneo et al. (2020) and estimate the RDD specified in Equation 3 non-

parametrically using polynomials of order 1 and 2 and triangular kernel weights. The

optimal bandwidth is chosen to minimize the asymptotic mean squared error (MSE). I

report robust standard errors adjusted for clustering at the state level (Calonico et al.,

2014; Cattaneo et al., 2020).

3.1.3 Violence and Corruption

Figure 3 depicts the effect of electing a pro-mining mayor on police violence and cor-

ruption during her time in office using the preferred linear polynomial approximation

(Cattaneo et al., 2020).26 Panel A shows a significant positive jump around the threshold

for observing at least one incident of police violence against protesters during the term of

a pro-mining as opposed to an anti-mining mayor. The magnitude of the estimated effect

is sizable: the narrow election of pro-mining candidate increases the probability of police

violence by about 186% relative to the average. Results are quantitatively robust to the

use of quadratic polynomials but less precisely estimated (Table C.2 in the appendix).

An interesting pattern arises for corruption crimes during time in office. Panel B

of Figure 3 suggest that the victory of a pro-mining candidate increases—albeit not

significantly—the probability of corruption in office. Panel B, however, disguises inter-

esting heterogeneity across procedural stages of corruption cases. Panel C shows a clear

discontinuous jump in the probability of corruption cases at the investigative stage (stage

1 ), while no discontinuity can be detected for formal charges being levied against pro-

26Coefficient estimates for both linear and quadratic polynomials are presented in Table C.2 in the
appendix.
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mining mayors in Panel D. The observed disparity between initial investigations and for-

mal charges is consistent with pro-mining mayors curtailing investigations against them.

While other explanations such as initial investigative bias against pro-mining mayors are

possible, the results are suggestive of political capture of the judicial process.

3.1.4 Democratic Accountability

In this subsection, I examine one facet of democratic accountability: the incumbency

advantage (de Benedictis-Kessner, 2018; Lewis et al., 2020, among others). If mayors are

held accountable for police violence during their term, the incumbency advantage should

be smaller for mayors whose time in office saw excessive use of force against protesters. To

test this hypothesis, I separately estimate the individual and unconditional incumbency

effect on (i) the probability that a candidate will run in the next election and (ii) the

probability of running in and winning that election for both “types” of elected mayors.

Importantly, both outcome measures account for selection into rerunning as opposed to

using the change in a candidate’s vote share (De Magalhaes, 2015). A decision unlikely

to be random; only approximately 36% of incumbents run for reelection as opposed to

54% of runners-up.27

To identify the causal effect of incumbency, I adapt the regression discontinuity de-

sign in equation (3). The unit of analysis now is the individual candidate and I com-

pare winners and runners-up. By construction, the sample is perfectly balanced for all

municipality-level variables and the density of the margin of victory is identical on both

sides of the cutoff. The identification assumption is that for close elections the assignment

of incumbency is as good as random. Incumbents and runners-up should be indistinguish-

able at the threshold except for their incumbency status. Rows 2 and 3 of Table C.1 in

the appendix show that the gender composition of candidates does not significantly vary

around the cut-off.28

Figure 4 presents the treatment effect of incumbency on the probability of running

27Summary statistics for the two samples—mayoral terms without and with police violence—are
presented in Table C.3 in the Appendix.

28Election outcome and candidate files do not contain individual candidate information beside name
and gender such that the balance test of individual characteristics is, here, restricted to gender.
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(Panel A) and on the probability of running and winning (Panel B) for both subsets of

elections—those following a mayoral term without police violence (dark shades of blue

and red) and those following a term characterized by excessive force against protesters

(light shades of blue and red). Incumbents that barely won their election are less likely

to run in the subsequent election than candidates who barely lost the election. However,

the incumbency disadvantage does not differ or is even smaller for mayors whose term

was characterized by police violence. This suggests that incumbents do not expect that

the violent suppression of protests hurts their reelection chances. A similar pattern is

observed in Panel B for the unconditional probability of winning. Bare winners whose

term was not marked by police violence are significantly less likely to be reelected, while

such an incumbency disadvantage cannot be detected for incumbents whose time in office

saw the use of excessive police force against protesters.29 These findings are qualitatively

robust to estimating a quadratic in lieu of a the baseline local linear regression (Table

C.4 in the Appendix).

Overall, the results indicate that the democratic accountability of mayors with respect

to the violent suppression of protests in their municipality is limited.

3.2 Is Use of Excessive Force Effective?

In this section, I take advantage of a unique feature of the social conflict data set: each

social conflict and associated events are tracked over time. This allows me to investigate

whether the violent suppression of social protests proves effective (from the perspective of

the repressing authorities). To causally identify the effect of interest, I apply a marginal

structural model (MSM) framework.

3.2.1 Data

The end of social conflicts can be broadly categorized into three different outcomes: (1)

signing of a resolution agreement (2) “removal” of the conflict due to inactivity, and (3)

right-censoring of the conflict due to the end of the study period. For this analysis, I

29The one sided p-values for the estimated difference in the incumbency advantage are 0.28 and 0.14
for running, respectively, running and winning.
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focus on comparing the former two outcomes. In particular, resolution agreements usually

contain some form of concession to the activists such as compensation payments for the

(illegal) use of communal land or damages to the environment; they are costly for mining

corporations and local authorities and, therefore, can serve as a proxy for an “undesired”

outcome from their point of view. In contrast, the removal of a conflict from the list

of social conflicts tracked by the ombudsman requires a period of prolonged inactivity.

This outcome can, hence, be viewed as “desirable” and “costless” (conditional on conflict

length).

Note that I define the end of the conflict as the last month when the social conflict

was still active. This definition allows me to account for two aspects of the data. First,

the Peruvian ombudsman does not have a fixed threshold of duration of inactivity beyond

which social conflicts are no longer tracked; i.e., conflicts can be removed after 8 months of

inactivity or two years. Second, some social conflicts become inactive after the successful

negotiation of a resolution agreement but before its signing.

I combine the data on social conflicts with an extensive set of time-varying and time-

invariant conflict-specific covariates. The set of time-varying controls comprises past

incidents of police violence, protests and protester riots as well as information on mineral

and crop prices, rainfall or temperature. The set of time-invariant covariates includes

district characteristics such as night light, share of indigenous lands, mining transfers,

and conflict characteristics such as the the market capitalization and location of the

majority owner of the mining project associated with the conflict. Table A.1 in the

appendix provides a comprehensive list of all variables.

3.2.2 Dynamic Causal Inference

The causal identification of the effect of interest in this setting requires the use of dynamic

causal inference methods. Traditional methods that fail to account for the dynamic

process preceding the final outcome will face a dilemma—failing to include important

covariates leads to omitted variable bias—but the inclusion of these covariates might

coincidentally introduce post-treatment bias.
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To make things less abstract, consider the following illustrative example. Following

consecutive months of protests, local authorities decide to use excessive force to disperse

the opposition. On the one hand, failing to account for past protest incidents would result

in omitted variable bias. On the other hand, police violence might spark more protests in

return, triggering a harsher crackdown. Including protests as a covariate would, hence,

lead to post-treatment bias.30

As originally shown in Robins et al. (2000) and later by Blackwell (2014), marginal

structural models (MSMs) using inverse probability of treatment weighting (IPTW) on the

data allow causal identification in the present setting if two main assumptions are fulfilled:

sequential ignorability and positivity. Intuitively, sequential ignorability requires that,

conditional on the covariate and action (treatment) history, social conflicts experiencing

violent suppression at a particular time t are “similar” to those that do not.31 Second, the

assumption of positivity requires that all action sequences that are theoretically possible

be observed in the data.32 Since months with police violence are rare events, I recode

the data such that a single time period t encompasses 3 months. 33 Moreover, I follow

Blackwell (2013) and restrict the analysis to common support on baseline covariates,

which in essence defaults to the exclusion of time periods that never experienced police

violence across conflicts from the analysis.

Intuitively, IPTW works because actions—here police violence—become unrelated to

the measured confounders in the reweighted data and, thus, confounders can no longer

explain any remaining differences between action sequences. Formally, suppose that there

are i = 1, ..., N social conflicts, each spanning t = 1, ..., Ti 3-month periods, where Ti

denotes the last 3-month period of conflict i and t = 1 the “baseline” time period—i.e.,

the time period before the social conflict begins. In each time period of the conflict, we

observe whether local authorities decide to use force against opponents, denoted Ait = 1,

30Figure D.2 in the appendix visualizes this dynamic causal framework.
31Figure D.3 in the appendix provides a graphical illustration of a scenario when the sequential

ignorability assumption is fulfilled (Panel A) and when it is violated (Panel B).
32The positivity assumption is closely related to the assumption of common support in the matching

literature.
33Note that the data set is still heavily imbalanced; i.e., only in approximately 2.8% of all the 3-month

intervals is police violence observed. This creates a challenge for learning algorithms. Appendix Section
D.1.1 discusses how potential solutions can address this issue during the learning phase.
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or abstain from such measures (Ait = 0). At the same time, the circumstances around

social conflicts change over time. Let Xit denote the characteristics of the social conflict

in period t that affect the decision of local authorities to apply violence against activists.

The implementation of the MSM framework in the context of social conflicts follows the

following (common) steps:

1. estimate the probability of the observed action (Ait) on the covariate (X it) and

action history (Ait−1). The sequential ignorability assumption requires in this step

that the “correct” model of the action sequence be estimated. However, the relevant

set of covariates and the functional form relating them to outcomes are unknown. To

lend more credence to this assumption, I apply three different estimation methods

for the action sequence model. First, I follow Blackwell (2013) and estimate a logit

model with a preselected set of relevant covariates. Second, I rely on data-driven

selection methods suggested by Montgomery and Olivella (2018) and, in a first step,

use a logit–LASSO model to determine which variables are most correlated with

the decision to apply excessive force. Finally, I use gradient boosting machines

(GBM) to accommodate potentially complex nonlinear functional forms and deep

interactions (Montgomery and Olivella, 2018). I use 10-fold cross-validation to

determine the optimal hyperparameter values for each of the two latter algorithms

that minimize the out-of-sample logarithmic loss.

2. estimate the probability of the observed action (Ait on the action history (Ait−1) and

the baseline time period covariates (Xi1). Here, I again rely on the three estimation

methods outlined in step 1.

3. calculate the “stabilized weight” for each social conflict as

SWi =
T∏
t=1

Pr
(
Ait|Ait−1, Xi1

)
Pr
(
Ait|Ait−1, X it

) . (4)

Note that, while the numerator could simply be assumed to be one, stabilizing the

weights by the marginal probability of action conditional on past actions (Ait−1)
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and predetermined baseline covariates Xi1 (step 2) reduces the variability of the

weights and increases efficiency.34

4. estimate the causal effect of the sequence of previous actions on the outcome of

interest at time T using the estimated stabilized weights in a weighted (binomial)

regression model. A common model choice for the MSM is to estimate a linear

additive function of the form:

yiT = β0 + β1

(
T∑
t=1

Ait

)
+ βXiT + ϵ. (5)

In the social conflict context, this model assumes that social conflicts that experi-

enced the same number of total periods with police violence have similar potential

outcomes. A simplifying assumption of this model is that violent suppression in

the first six months of a conflict has the same effect as that in the last six months.

Given the sparsity of police violence in the data, I also estimate a model speci-

fication assuming that social conflicts experiencing at least one incident of police

violence have similar potential outcomes.

5. calculate the standard errors and confidence intervals by bootstrapping the entire

estimation procedure, including the weights (Robins et al., 2000; Blackwell, 2013).35

More details on the algorithms used to estimate the IPTW and their performance and

on the MSM model framework are provided in Appendix Section D.

3.2.3 Results

Stabilized Weights The critical step in the calculation of stabilized weights is to build

the “correct” model for the action sequence
−→
Ai = Ai1, ..., AiT−1. This requires appropriate

selection of covariates, interactions, and specific functional forms for the standard logit

34As shown in Robins et al. (2000), this modeling choice of the numerator leaves the consistency of
the MSM estimator intact. Following Montgomery and Olivella (2018), the hyperparameters for the
logit–LASSO and GBM when I estimate the numerator are set to their optimal values found for the
denominator in step 1.

35Note that social conflicts, not time periods, are resampled.
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model. These requirements are gradually relaxed for logit–LASSO and GBM.36 Table D.1

in the appendix provides an overview of the predictors used in each algorithm. Following

Blackwell (2013), I restrict the estimation of IPTW to a sample with common support on

baseline covariates due to empirical violations of the positivity assumption; i.e., stabilized

weights for periods without any historically observed police violence across social conflicts

are set to one.

The final distribution of stabilized weights by three-month intervals for each algorithm

is presented in Figure 5.37 As discussed in Cole and Hernán (2008), the mean of the

estimated weights is required to equal one at each time period. Reassuringly, Panels B

and C show that the average estimated weight for each 3-month interval is reasonably close

to one, with the former exhibiting better-behaved weights. Moreover, the range of weights

is fairly narrow. For the standard generalized linear model (GLM), the weights are more

variable, with extreme values pushing the mean of the weights away from one. Therefore,

I follow the suggestion of Cole and Hernán (2008) and truncate the weights at the 97.5th

and 2.5th percentiles to center the average weights around one. The distribution of the

truncated weights is presented in Panel A.

MSM estimates Table 5 reports the MSM estimates and the bootstrapped 95% con-

fidence intervals for the effect of police violence on the probability of a social conflict’s

ending in an official resolution agreement. The rows correspond to three different algo-

rithms used to calculate the stabilized weights. Even columns assume that social conflicts

that experienced any police violence have similar potential outcomes, while odd columns

assume that conflicts with the same number of 3-month intervals with police violence

have similar potential outcomes. The odd ratio estimates in column 1 provide some indi-

cation that the odds of an official resolution agreement are lower for conflicts with police

violence. The results are similar if the MSM considers the total number of intervals with

excessive force. However, the bootstrapped 95% confidence intervals include 1 and are

36Note that both logit–LASSO and GBM require preselection of all potential predictors while the
standard logit model requires selection of the set of relevant predictors.

37Note that the social conflicts start at various times so that there are very few conflicts that continued
over the course of more than 8 years (32 3-month intervals), but many lasted up to 3 years (12 3-month
intervals).
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wide in the case of the results with the XGBoost weights. A qualitatively similar pattern

arises for the LPM. The marginal effect of police violence is estimated to be negative

for all model specifications but remains insignificant, with the upper bound of the 95%

confidence interval just above 0. As for the logit MSM, the effects are most precisely

(imprecisely) estimated for the results using the logit–LASSO (XGBoost) weights.

In summary, the MSM estimates show a qualitatively robust pattern across model

specifications: police violence decreases the probability of conflicts ending in “costly”

resolution agreements. However, the noisily estimated effects should be interpreted only

as suggestive evidence for the efficacy of excessive use of force.

4 Conclusion

This paper introduces a new data set on violent suppression of socioenvironmental ad-

vocacy against formal mining activity in Peru. Leveraging the spatial and temporal

granularity of the data and changes in world mineral prices, I provide causal evidence on

the positive relationship between local mineral rents and violent confrontations between

protesters opposing local mining projects and the national police. Quantitatively, I esti-

mate that a one-percentage-point increase relative to the mean in world prices of the main

mineral mined in a municipality more than doubles the probability that I observe use of

excessive force. Further, I show that this escalation in social conflicts is independent of

the level of protester violence.

These baseline results are complemented with empirical evidence from municipality

elections. Using a regression discontinuity design, I find that the narrow election of a

pro-mining as opposed to an anti-mining candidate increases the probability of police

violence against activists. Moreover, the election of a pro-mining candidate significantly

increases the probability of initial investigations into corruption offenses in office that

is, however, not reflected by a higher probability of formal charges, suggesting that pro-

mining mayors are able to curtail investigations against them. Further, I show that the

democratic accountability of mayors is limited with respect to police violence against
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protesters during their time in office.

Finally, I take a first step in the direction of providing causal estimates on the efficacy

of violence in dispersing opposition. Taking advantage of the availability of information

on the full timeline of each social conflict in the data set, I use a marginal structural

model framework to estimate how the strategic use of excessive force affects the final

outcome of the conflict. Formal resolution of social conflicts, which commonly involves

financial compensation for environmental damages or use of land for local communities,

is estimated to become less likely if violence is strategically applied over the course of a

conflict.

This study’s results contribute to the emerging literature on the political economy of

human rights. The findings show that violence against agents of civil society constitutes

an important negative externality of local mining activity even in stable democracies.

Further, the present study highlights the potentially adverse effects of central government

transfers of natural resource rents to local governments even if the use of those funds is

regulated by law and free elections should ensure political accountability. This can help

policymakers design redistribution schemes that internalize these externalities and align

incentives of corporations, local authorities, and local community activists.
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5 Tables

Table 1: Descriptive Statistics: District Level (in %)

Force used against protesters Protester behavior

Pr(Arrests > 0) Pr(Injuries > 0) Pr(Casualties > 0) Pr(Violence > 0) Pr(Riots > 0)

All N 355870 355870 355870 355870 355870

Mean 0.013 0.038 0.008 0.008 0.012

SD 1.161 1.955 0.871 0.918 1.073

Production N 40850 40850 40850 40850 40850

Mean 0.049 0.149 0.039 0.022 0.037

SD 2.212 3.861 1.979 1.484 1.916

Concessions N 53390 53390 53390 53390 53390

Mean 0.036 0.079 0.011 0.024 0.030

SD 1.886 2.804 1.060 1.560 1.731

None N 261630 261630 261630 261630 261630

Mean 0.003 0.013 0.002 0.003 0.004

SD 0.587 1.123 0.437 0.553 0.618

Notes: All variables are presented in percent. Author’s computation on basis of MIMEM and SNL Minings &

Metals database.
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Table 2: Social Conflict and Mineral Prices

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots
(1) (2) (3) (4) (5)

M× ln(Price) 0.0004** 0.0019*** 0.0007** 0.0002 0.0002
(0.0002) (0.0007) (0.0003) (0.0002) (0.0002)

Dep. variable mean 0.0004 0.0011 0.0002 0.0002 0.0003
District × year FEs ✓ ✓ ✓ ✓ ✓
Observations 94241 94241 94241 94241 94241

Notes: M equals one for mining districts (production or concessions) and
0 otherwise. Ln(Price) denotes the natural logarithm of the main mineral
price in month t. The main mineral in a district is determined by the (i) to-
tal production value and (ii) count of a concession’s primary commodities.
Heteroskedasticity- and autocorrelation-corrected standard errors accounting
for spatial correlation of up to 500 km and unlimited serial correlation are
obtained with the Stata module acreg (Colella et al., 2023). A linear de-
cay in distance in the spatial correlation structure is assumed. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 3: Neighborhood Analysis

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots
(1) (2) (3) (4) (5)

ln(Price) 0.0001 -0.0003 -0.0001 -0.0001 0.0000
(0.0001) (0.0003) (0.0001) (0.0002) (0.0002)

M× ln(Price) 0.0010* 0.0022** 0.0007* 0.0005 0.0004
(0.0006) (0.0009) (0.0004) (0.0004) (0.0005)

Dep. variable mean 0.00009 0.00028 0.00004 0.00008 0.0001
Neighbor × year FEs ✓ ✓ ✓ ✓ ✓
Month FEs ✓ ✓ ✓ ✓ ✓
Observations 1149880 1149880 1149880 1149880 1149880

Notes: M equals one for mining districts (production or concessions) and 0
otherwise. ln(Price) denotes the natural logarithm of the main mineral price
in month t. The main mineral in a district is determined by the (i) total pro-
duction value and (ii) count of a concession’s primary commodities. Robust
standard errors are clustered at the neighbor and month level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 4: Summary Statistics – Social Conflict Level

Any police violence

No = 0 Yes = 1
(N = 248) (N = 67)

Mean SD Mean SD Diff. in Means p-value

Resolved (%) 0.49 0.50 0.39 0.49 -0.10 0.13
Removed (%) 0.27 0.44 0.28 0.45 0.01 0.83
Censored (%) 0.24 0.43 0.33 0.47 0.09 0.16
3-month intervals w/ protests 0.94 1.19 2.39 4.35 1.45 0.01
3-month intervals w/ protester riots 0.03 0.17 0.09 0.29 0.06 0.10
Duration (3-month intervals) 9.56 10.01 16.28 16.30 6.72 0.00
Main mineral price ($/kg) 9.03 13.45 12.45 14.95 3.42 0.09
Main crop price ($/kg) 0.54 0.75 0.50 0.65 -0.04 0.65
Temperature (◦C) 10.05 4.45 10.58 4.05 0.53 0.36
Rainfall (mm/month) 48.32 57.87 58.91 166.33 10.59 0.61
Canon minero0 ($1M) 2.03 5.17 3.51 8.62 1.48 0.18
Royalties0 ($1M) 0.42 1.61 0.59 1.33 0.17 0.38
Night light0 2.09 3.74 2.51 3.00 0.43 0.33
Population density0 (1/km2) 56.29 175.69 45.93 85.82 -10.36 0.50
Indigenous population density0 (1/km2) 0.02 0.22 0.03 0.23 0.01 0.82
Road density0 (1/km) 0.06 0.06 0.06 0.06 0.01 0.54
River density0 (1/km) 0.26 0.05 0.26 0.05 0.00 0.48
Mean elevation0 (km) 3.63 1.02 3.45 1.09 -0.18 0.23
Lake area0 (%) 0.47 1.23 0.41 1.81 -0.06 0.81
Native community land0 (%) 0.41 4.14 1.02 8.33 0.61 0.56
Indigenous land0 (%) 0.00 0.00 0.00 0.00 0.00 0.69
Foreign Owner0 (0/1) 0.48 0.50 0.57 0.50 0.08 0.23
Market Capitalization0 ($1B) 5.97 21.18 7.89 21.49 1.92 0.52
Leverage0 (%) 2.86 8.22 4.32 10.13 1.46 0.28

Notes: The first four columns present basic statistics (mean and standard deviation) for social
conflict characteristics across two “types” of conflicts: (i) social conflicts that never experienced po-
lice violence (column 1 and 2) and (ii) social conflicts that experienced at least one incident of police
violence (column 3 and 4). Column 5 presents the difference in means between the two types of
conflict for each conflict characteristic and column 6 presents the corresponding p-value for the null
hypothesis of no significant difference.
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Table 5: Effect of Police Violence on Likelihood of Official Resolution Agreement

Logit LPM

Binary Sum Binary Sum

(1) (2) (3) (4)

0.527 0.571 -0.125 -0.096
GLM

[ 0.094,1.661] [ 0.123,1.563] [-0.304,0.052] [-0.258,0.041]

0.559 0.595 -0.112 -0.090
LASSO

[ 0.118,1.579] [ 0.137,1.519] [-0.282,0.050] [-0.243,0.036]

0.881 0.889 -0.069 -0.066
XGBoost

[ 0.100,3.306] [ 0.105,3.275] [-0.277,0.132] [-0.269,0.125]

Notes: Bootstrapped 95% confidence intervals from 5,000 bootstrap
samples are in brackets. Estimates are winsorized at the 0.5th and
99.5th percentiles. Row panels correspond to estimation model used
for IPTW. Columns 1–2 and 3–4 present MSM estimates for logit and
linear probability models, respectively. Even columns depict MSM esti-
mates for a binary indicator of police violence during the course of the
social conflict. Odd columns present MSM estimates for the total num-
ber of three-month intervals with police violence during the course of
the social conflict.
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6 Figures

Figure 1: Natural Resource Rents and Socioenvironmental Conflict

Notes: The sample period is from 2002 to 2019. Panel A presents the quantile distribution of
average mineral rents (as percent of GDP) by country in sequentially darker shades of gray.
Panel B is restricted to countries with above-median natural resource rents and displays their
form of government. Countries are categorized on the basis of their Polity2 score (Marshall
et al., 2002) as follows: democracy (5 < Polity2 ≤ 10), anocracy (−5 ≥ Polity2 ≤ 5), and
autocracy (−10 ≥ Polity2 ≤ −5). The “best” estimates of fatalities in civil conflicts registered
in the UCDP Georeferenced Event Dataset (GED) Global version 22.1 (Sundberg and Melander,
2013; Davies et al., 2022) are presented as light-red-shaded point features. Panel B additionally
displays in dark red the total number of killed “land and environmental defenders” as reported
by Global Witness. Points are scaled in accordance with the inverse hyperbolic sine of the total
number of deaths divided by the average population size in a country times one million. Data on
population size and natural resource rents are taken from the World Bank’s World Development
Indicators.
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Figure 2: Industrial Mining and Social Conflict

Notes: Boundary limits of districts—the third and lowest administrative level in Peru—are
depicted. Mining concession areas are presented by the black-framed white areas.
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Figure 3: Effect of Electing a Pro-mining Mayoral Candidate on Police Violence and
Corruption in Office
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Notes: This figure presents a graphical linear polynomial approximation of the regression dis-
continuity design (Harding et al., 2023). Each panel presents the effects of (narrowly) electing
a pro-mining politician over an anti-mining politician for a different outcome. Shaded areas
denote 90% confidence intervals. The observations are shown within MSE-optimal bandwidths.
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Figure 4: Mayoral Incumbency Advantage by Use of Excessive Force
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Notes: This figure presents a graphical approximation of the regression discontinuity design
(Harding et al., 2023). Each panel presents the unconditional effect of being (marginally) elected
on (a) the probability of rerunning in the next election and (b) the probability of rerunning and
winning. Shaded areas denote 90% confidence intervals. The observations are shown within
MSE-optimal bandwidths using a linear polynomial approximation. Light, respectively, dark
blue and red colors depict the estimated relationship left and right of the cutoff for mayoral
terms characterized by (i) no police violence and (ii) at least one incidence of excessive force
against protesters. The corresponding binned mean probabilities are represented by open and
full circles, respectively.
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Figure 5: Stabilized Weights over the Course of Social Conflicts

Notes: This figure presents the estimated stabilized weights over the course of social conflicts
for three different estimators: (a) generalized additive models (GAM); (b) logit–LASSO models
(LASSO); and (c) gradient-boosted machines (XGBoost). Black lines present three-month
interval means across conflicts, gray rectangles denote interquartile ranges, and thin gray error
bars present the range of the weights. Stabilized weights computed from GAM estimates are
truncated at their 97.5th and 2.5th percentiles.
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A Data Appendix

A.1 Social Conflicts

A.1.1 Social Conflict Data Set

Peruvian Ombudsman Since April 2004, the Office of the Ombudsman (Defensoŕıa

del Pueblo de Perú) has published a monthly report on social conflicts in Peru. Each

report follows a fairly consistent format.38

Figure A.1: Ombudsman Report Example Entry

Source: Defensoŕıa del Pueblo de Perú “Reporte de Conflictos Sociales Nº 86” (April 2014).

Mining Project Ownership I rely on Bureau van Dijk’s Orbis database to obtain

corporate ownership information. Orbis reports shareholder history, allowing me to trace

ownership of mining subsidiaries over the sample period from March 2004 to December

2019. I cross-validate this information against publicly available reports of corporations

and authorities (e.g., SEC), the annual USGS Mineral Yearbook “Mineral Industry of

Peru” reports and S&P’s SNL Metals and Mining dataset. The latter, moreover, provides

information on the ownership of mining projects and concessions as well as their locations,

allowing me to trace ownership even when no company name is noted in the reports.

Geoprecision Code The highest precision level, 1, is recorded as the default value

of local social conflicts at the district level (ADMIN3). If the social conflict is noted to

take place at the provincial (ADMIN2) or departmental (ADMIN1) level, the precision

38The ombudsman has updated the report’s outline over time, although key formats and information
were preserved over the sample period. The report numbers for which the ombudsman made nonnegligible
updates to the report outline are as follows: 3, 9, 11, 21, 35, 50, 72, and 90.
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level is 2 or 3, respectively, and the province capital or department capital is used, unless

previous or subsequent reports have information at a more granular level. In the latter

case, the noted district- and/or province-level information in other reports is used.

A.1.2 Protest Data Set

Geoprecision Code If the report notes a particular town or district (ADMIN3), the

highest precision level, 1, is recorded. If the source material notes the area around the

mine or community, the geoprecision code is 2. The same code is applied if the mentioned

location of the protest covers an area comprising multiple districts. If only the province

(ADMIN2) is mentioned, the provincial capital is used, and the precision level is 3. If

only the department and no other information is available, the departmental capital is

used and noted with precision level 4.
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A.1.3 Additional Figures

Figure A.2: Mineral Rents and Social Conflict (2004–2019)

Notes: Mineral rents per capita (in constant 2015 USD) are computed from the World Bank’s
World Development Indicators and depicted by the black solid line. Grey bars display the
number of social conflicts related to industrial mining and are calculated by the author on
the basis of “Conflictos sociales” reports published by the Peruvian Office of the ombudsman
(Defensoria del Pueblo).
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Figure A.3: Social Conflict and Royalties

Notes: Boundary limits of districts–the third and lowest administrative level in Peru–are de-
picted. Mining concession areas are presented by the black framed white areas. Total transfers
received by each district from mining royalties in real 2010 US dollars over the period from
2002-2019 are depicted.
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Figure A.4: Social Conflict and Canon Minero

Notes: Boundary limits of districts–the third and lowest administrative level in Peru–are de-
picted. Mining concession areas are presented by the black framed white areas. Total transfers
received by each district from canon minero in real 2010 US dollars over the period from 2002-
2019 are depicted.
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A.2 Government Plans

Figure A.5: Mayoral Candidate Government Plans

(a) Infogob profile of mayoral candidate

(b) Government plan excerpt

Notes: The top panel presents the profile of a mayoral candidate in the Infogob database. The
bottom panel displays an excerpt of the mayoral candidate’s government plan for 2002. All
available government plans can be accessed in the planes de gobierno window displayed at the
bottom right corner in the top panel.
Source: https://infogob.jne.gob.pe/Politico/FichaPolitico/segundo-ramon-moreno-
pacherres historial-partidario LqJgXVKnPC4=JV (last accessed 5 September 2023).

A.2.1 Classification of Government Plans

The classification procedure can be broadly summarized into these three (four) steps:

1. Preprocess government plans to obtain text corpus.

2. Filter government plans that (i) deal with mining and (ii) have relevant passages

concerned with mining.

3. Ask GPT-4 to answer 5 questions based on the passages extracted in step 2 to

determine the candidate’s sentiment toward formal mining.
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• If the answers are conflicting, feed text back to GPT-4 again with an adjusted

prompt tailored toward resolving the conflict.

(4) If the classification procedure returns an error in any of the first three stages of the

process, label the government reports manually.

Below, I elaborate on each of these steps.

Preprocessing I use the python libraries pdfplumber and pytesseract to extract

text from pdf documents and scans and the Linux application antiword to process .doc

Word documents. The text output is saved in a simple .txt file.

Filtering I use a semiautomatically generated keyword list to identify relevant mining

terms in a text document. In particular, I use the pretrained Spanish word embeddings

from Cardellino (2019) to obtain the top 50 most similar words (in cosine similiarity) to

“minera”. I clean the top 50 results of ambiguous (e.g., minerales) or irrelevant (e.g.,

petrolera) words and supplement the list with terms to identify mining corporations

active in Peru (e.g., bhp). The final keyword list is: carbońıfera, barrick, yacimiento,

copper, riotinto, bauxita, siderúrgico, mineŕıa, minero, mineros, auŕıfera, codelco, carbón,

mineras, metalúrgicas, boliden, mina, glencore, siderúrgicas, siderurgia, mines, minas,

mining, minera, spcc, plata, copper, zinc, minsur, shougang, silver, hudbay, marcobre,

nexa, gold, shahuindo, coal, antamina, xstrata, newmont, bhp, doe.

With the keyword list in hand, I use spaCy (Honnibal et al., 2020) to segment the text of

each government plan document into sentences. I subsequently split each sentence into

separate tokens (words) and compare each token against the keyword list.39 I retain all

sentences that include at least one keyword and a window of the 4 sentences before and

after the sentence containing the keyword to retain contextual information. Finally, I

combine all selected sentences to obtain a concise representation of the relevant passages

of the original document.40 Documents that do not contain any mining keywords are

labeled “unknown.”

GPT-4 The relevant passages for each government plan obtained in the previous step

(denoted .text esp below) are then used to send the following prompt to GPT-4:

[ . t e x t e sp ]

From the text in Spanish above , answer the f o l l ow i ng que s t i on s .

Report r e s u l t s in a j son array with a j son ob j e c t with three keys f o r each

ques t i on : answer in Engl i sh ; r ea son ing in Engl i sh ; support ing quotes .

39I apply some simple preprocessing to trim excess whitespace and remove punctuation in each sen-
tence.

40Note that I remove duplicates if the window of one sentence contains part of the window of another
keyword sentence.
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Provide reason ing up to 50 words .

∗ Does the text f o cu s on the p o s i t i v e a spec t s o f formal mining ? Answer yes /

no .

∗ Does the text sugges t the promotion o f formal mining a c t i v i t y ? Answer yes

/no .

∗ Does the text f o cu s on the negat ive impacts o f formal mining ? Answer yes /

no .

∗ Does the text sugges t r e s t r i c t i o n s on formal mining a c t i v i t y ? Answer yes /

no .

∗ I s the text neu t ra l towards formal mining ? Answer yes /no .

The response from GPT-4 takes the following standardized form, as illustrated in the

example output below:

[{
”answer ” : ”no ” ,

” reason ing ” : ”The text does not f o cus on the p o s i t i v e a spec t s o f formal

mining . ” ,

” suppor t ing quote s ” : ””

} ,
{

”answer ” : ”no ” ,

” reason ing ” : ”The text does not sugges t the promotion o f formal mining

a c t i v i t y . ” ,

” suppor t ing quote s ” : ””

} ,
{

”answer ” : ” yes ” ,

” reason ing ” : ”The text mentions the need f o r environmental impact

s t ud i e s and damage mi t i ga t i on due to mining e xp l o i t a t i o n . ” ,

” suppor t ing quote s ” : ” e j e cu t a r e s tud i o s de impacto ambiental y

m i t i g a c i n de d a o s por l a e x p l o t a c i n de l o s r e cu r s o s mineros de

cuajone y que l l ave co p r x im o a exp lo ta r . ”

} ,
{

”answer ” : ” yes ” ,

” reason ing ” : ”The text sugge s t s the implementation o f an environmental

management plan and the d e c l a r a t i on o f i n t a n g i b i l i t y o f c e r t a i n

areas . ” ,

” suppor t ing quote s ” : ” plan de g e s t i n ambiental . d e c l a r a c i n de

i n t a n g i b i l i d a d de l o s a rcos g l a c i a r e s de arondaya . ”

} ,
{

”answer ” : ”no ” ,

” reason ing ” : ”The text i s not neu t ra l towards formal mining as i t

h i g h l i g h t s the need f o r environmental impact s t ud i e s and damage

mi t i ga t i on . ” ,
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” suppor t ing quote s ” : ” e j e cu t a r e s tud i o s de impacto ambiental y

m i t i g a c i n de d a o s por l a e x p l o t a c i n de l o s r e cu r s o s mineros de

cuajone y que l l ave co p r x im o a exp lo ta r . ”

} ]

The five questions are designed to allow classification of the government plan’s sen-

timent toward mining—specifically, as pro, anti, or neutral. For instance, I classify a

mayoral candidate as pro-mining if at least one of the first two questions is answered

with “yes” (Y) by GPT-4 and the answers to questions three, four, and five are “no” (N).

Below, I outline in detail how the answers translate to labels:

1. pro: YYNNN, YYNYN, YNNNN, NYNNN.

2. anti : NNYYN, NYYYN, NNYNN,NNNYN.

3. neutral : NNNNY, NNNNN.

4. conflict : otherwise

Government plans for which a logical conflict in the answers exists—e.g., if the focus

is on both the benefits and negative impacts of formal mining (YNYNN)—the plans are fed

back to GPT-4 with the following adjusted prompt:

[ . t e x t e sp ]

From the text in Spanish above , answer the f o l l ow i ng ques t i on . Report

r e s u l t s in a j son array with a j son ob j e c t with three keys f o r each

ques t i on : answer in Engl i sh ; r ea son ing in Engl i sh ; support ing quotes .

Provide reason ing up to 50 words .

∗ Does the text f o cu s on the b e n e f i t s and promotion o f formal mining or on

the negat ive impact and r e s t r i c t i o n o f formal mining ? Answer b e n e f i t s

and promotion/ negat ive impact/ ne i t h e r .

Errors If the classification procedure returns an error in any of the first three stages

of the process, e.g., because the pdf document is protected, the government report is

manually inspected and labeled by the principal investigator. Documents that cannot

be classified due to the document’s being password protected or containing only a blank

page are treated as if missing.41

41In future iterations of the paper, a random sample of 10% of the GPT-4 responses will be drawn
and cross-validated by human coders on Amazon Mechanical Turk or Google Cloud’s Vertex AI.
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A.3 Mineral Prices

Mineral price information at monthly (and yearly) frequency is retrieved from the World

Bank Commodity Price Data.42 The price development of each mineral over the period

2002–2020 is graphed in Figure A.6. At yearly frequency, I supplement the data set with

digitized price information on minerals mined in Peru but not covered by the World Bank

from the USGS ’s “Mineral Commodity Summaries” or “Mineral Yearbooks.”43 Note that

the USGS mineral prices do not reflect the world mineral price but the average price for

the US. All mineral prices are converted to real USD with the MUV Index provided by

the World Bank and uniformly expressed as $/kg. A list of the minerals mined in Peru

and priced at monthly and yearly frequency is provided below:

Monthly Mineral Prices:

• World Bank : Iron, Copper, Lead, Tin, Zinc, Gold, Silver.

Yearly Mineral Prices:

• World Bank : Iron, Copper, Lead, Tin, Zinc, Gold, Silver.

• USGS : Arsenic, Bismuth, Cadmium, Manganese, Molybdenum, Tungsten.

42For more details, see https://www.worldbank.org/en/research/commodity-markets#1.
43For more details, see https://www.usgs.gov/centers/national-minerals-information-

center/commodity-statistics-and-information.
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Figure A.6: Mineral Prices

Notes: Prices for each mineral are expressed in real 2010 USD per kg for the period from
January 2002 to December 2020.
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A.4 Variable Definitions

Table A.1: Variable Definitions

Variable Abbreviation Description

Arrests arrests Dummy equaling 1 if at least one arrest of a

protester was observed in district i in month t

and 0 otherwise. Prefix protest indicates that

the district location of the event is used;

conflict indicates that the location(s) of the

social conflict instead of the event location is

(are) used. Suffix confirmed indicates that only

“confirmed” arrests are considered; wo pr

indicates that months with protester riots are not

considered and are coded as 0.

Injuries injuries Dummy equaling 1 if at least one injury of a

protester was observed in district i in month t

and 0 otherwise. Prefix protest indicates that

the district location of the event is used;

conflict indicates that the location(s) of the

social conflict instead of the event location is

used. Suffix confirmed indicates that only

“confirmed” injuries are considered; wo pr

indicates that months with protester riots are not

considered and are coded as 0.

Casualties casualties Dummy equaling 1 if at least one casualty among

protesters was observed in district i in month t

and 0 otherwise. Prefix protest indicates that

the district location of the event is used;

conflict indicates that the location(s) of the

social conflict instead of the event location is

used. Suffix wo pr indicates that months with

protester riots are not considered and are coded

as 0.

Killing killing Dummy equaling 1 if at least one casualty among

activists was observed in district i in month t and

0 otherwise. This can include fatal violence

during protests or assassinations.

12



Table A.1: Variable Definitions (continued)

Variable Abbreviation Description

Protester

violence

protester violence Dummy equaling 1 if at least one incident of

protester violence was observed in district i in

month t and 0 otherwise. Prefix protest

indicates that the district location of the event is

used; conflict indicates that the location(s) of

the social conflict instead of the event location is

(are) used.

Protester

riots

protester riots Dummy equaling 1 if at least one incident of

violence or destruction of property by protesters

was observed in district i in month t and 0

otherwise. Prefix protest indicates that the

district location of the event is used; conflict

indicates that the location(s) of the social conflict

instead of the event location is (are) used.

Main

mineral

price

price Main mineral price in month t for district i. The

main mineral in a district is determined by (i)

total production value or (ii) the primary

commodity count of concessions (in nonproducing

districts).

Price

index

avg price Weighted price index in month t for district i.

Weights are computed as each mineral’s share of

(i) total production value or (ii) the primary

commodity count of concessions (in nonproducing

districts).

Conflict

resolution

resolved Dummy equaling 1 in the last month where

conflict c was active before an official resolution

agreement between conflict parties was signed

and equaling 0 otherwise.

Conflict

removal

removed Dummy equaling 1 in the last month where

conflict c was active before the conflict was

removed from the list of tracked conflicts by the

Peruvian ombudsman due to inactivity and

equaling 0 otherwise.
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Table A.1: Variable Definitions (continued)

Variable Abbreviation Description

Conflict

censoring

censored Dummy equaling 1 in the last month before

conflict c was right-censored either at the end of

the sample period (December 2019) or because of

unexplained removal from the list of conflicts

tracked by the Peruvian ombudsman and

equaling 0 otherwise.

Protest protest Dummy equaling 1 if at least one protest

associated with social conflict c was observed in

3-month interval t and equaling 0 otherwise.

Protester

riots

protester riots Dummy equaling 1 if at least one incident of

violence or destruction of property by protesters

associated with social conflict c was observed in

3-month interval t and equaling 0 otherwise.

Main

mineral

price

avg price Average of main mineral price in 3-month

interval t across districts i = 1, ..., N where social

conflict c takes place. The main mineral in

district i is determined by the (i) total

production value or (ii) primary commodity

count of concessions (in nonproducing districts).

Main crop

price

avg crop price Average of main crop prices in 3-month interval t

across districts i = 1, ..., N where social conflict c

takes place. The main crop in district i is

determined by the total production value of each

crop with monthly price data coverage from the

World Bank. Crop production for the year 2000

is obtained from EarthStat database (Monfreda

et al., 2008).

Temper-

ature

avg temp Average temperature in 3-month interval t across

districts i = 1, ..., N where social conflict c takes

place. Data on temperature are obtained from

the CRU TS v4 database (Harris et al., 2020).

Rainfall avg precip sum Average precipitation in 3-month interval t across

districts i = 1, ..., N where social conflict c takes

place. Data on monthly precipitation are

obtained from the NOAA Global Precipitation

Climatology Centre.
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Table A.1: Variable Definitions (continued)

Variable Abbreviation Description

Duration conflict length Length of conflict in 3-month intervals.

Canon

minero

canon minero Total amount of canon minero obtained in a year

by districts i = 1, ..., N where social conflict c

takes place.

Royalties royalties Total amount of royalties obtained in a year by

districts i = 1, ..., N where social conflict c takes

place.

Nighttime

Light

nl mean Average of nighttime lights across districts

i = 1, ..., N where social conflict c takes place.

For consistency over time, the harmonized global

nighttime light dataset from Li et al. (2020) is

used.

Population

density

pop ghs density Number of citizens per km2 across districts

i = 1, ..., N where social conflict c takes place.

Data on population counts available at 5-year

intervals are taken from the Global Human

Settlement Layer Schiavina et al. (2023).

Indigenous

population

density

pop indigena density Number of indigenous citizens per km2 across

districts i = 1, ..., N where social conflict c takes

place. Data on the number of indigenous citizens

are taken from the Mapeo territorial of the

Instituto del Bien Común.

Indigenous

land (%)

perc area indigena Ratio of indigenous land to total district area

across districts i = 1, ..., N where social conflict c

takes place. Data on indigenous areas are taken

from the Mapeo territorial of the Instituto del

Bien Común.

Native

communi-

ties land

(%)

perc area nativa Ratio of land inhabited by native communities to

total district area across districts i = 1, ..., N

where social conflict c takes place. Data on native

community areas are taken from the Mapeo

territorial of the Instituto del Bien Común.
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Table A.1: Variable Definitions (continued)

Variable Abbreviation Description

Road

density

road density Road length (in km) relative to district area

(km2) averaged across districts i = 1, ..., N where

social conflict c takes place. Data on the

Peruvian road network are obtained from the

Ministerio de Transportes y Comunicaciones.

Lake area

(%)

perc lake Ratio of land covered by lakes to total area across

districts i = 1, ..., N where social conflict c takes

place. Data on lake sizes are obtained from the

HydroSheds database.

River

density

river density Length of rivers (in km) relative to district area

(km2) across districts i = 1, ..., N where social

conflict c takes place. Data on waterways are

obtained from the HydroSheds database.

Elevation elev mean Average elevation across districts i = 1, ..., N

where social conflict c takes place. Elevation data

are obtained from SRTM v4 dataset.

HQ

country of

majority

owner(s)

MajorityOwnerLoc Categorical variable that can take 3 mutually

exclusive values: (i) ”foreign” if (at least one of)

the majority owner(s) of the mine/project

associated with conflict c is (are) headquartered

outside of Peru, (ii) ”local” if the majority

owner(s) is (are) Peruvian, and (iii) ”N/A” if no

information on the location of the owner(s) is

available. Historical ownership shares are

obtained from Bureau van Dijk’s Orbis database

and cross-validated with annual reports if

available. Location information is obtained from

Orbis and S&P’s Compustat database.

Market

capitaliza-

tion of

majority

owner(s)

mkvalt Market value (US$) of the majority owner(s) of

mine/project associated with conflict c. The

average market value is used if there is more than

one publicly traded majority owner. Data on

market capitalization are obtained from S&P’s

Compustat database.
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Table A.1: Variable Definitions (continued)

Variable Abbreviation Description

Leverage

of

majority

owner(s)

leverage Ratio of total debt to total assets of the majority

owner(s) of mine/project associated with conflict

c. The average ratio is used if there is more than

one publicly traded majority owner. Data on

total debt and assets are obtained from S&P’s

Compustat database.

Police

violence

police violence Dummy equaling 1 if at least one incident of

violence (fatal or nonfatal) against protesters

associated with social conflict c was observed in

3-month interval t and equaling 0 otherwise

Political

competi-

tion

polcomp Political competition is calculated as the inverse

of the sum of squared vote shares of each

candidate within an electoral race (Artiles et al.,

2021).

Win

margin

x Margin in votes between pro-mining and

anti-mining candidate; > 0 if the pro-mining

candidate wins the election, and < 0 if the

anti-mining candidate wins the election.
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A.5 Summary Statistics

Table A.2: District Government Revenues from Royalties and Canon Minero
(2002–2019)

N Mean Median SD Min Max

All Canon Minero (in 2010 USD) 1873 6,213,556 941,625 22,433,363 0 535,857,094

Royalties (in 2010 USD) 1873 1,278,833 236,485 5,005,074 0 77,952,062

Production Canon Minero (in 2010 USD) 215 18,701,791 4,811,426 48,552,674 4,275 535,857,094

Royalties (in 2010 USD) 215 4,580,338 1,153,231 11,737,776 0 77,952,062

Concessions Canon Minero (in 2010 USD) 281 10,140,780 2,077,637 28,146,551 599 314,122,841

Royalties (in 2010 USD) 281 1,912,803 451,413 5,707,105 472 72,085,687

None Canon Minero (in 2010 USD) 1377 3,462,270 524,076 11,033,366 0 198,282,741

Royalties (in 2010 USD) 1377 633,976 150,223 1,955,571 0 39,808,289

Notes: Author’s computation on the basis of data from the Ministerio de Economı́a y Finanzas (MNF).
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Table A.3: World Production Shares by Commodity

(1) (2) (3) (4) (5) (6) (7)

Copper Gold Iron Lead Silver Tin Zinc

Panel A: Peru (Total)

2002 6.2 5.4 0.3 10.0 13.4 18.5 13.2

2003 6.1 6.6 0.3 10.4 14.8 18.4 13.9

2004 7.1 7.1 0.3 9.7 15.5 15.9 12.5

2005 6.7 8.4 0.3 9.8 16.5 14.5 12.2

2006 6.9 8.3 0.3 9.0 17.2 12.6 12.0

2007 7.7 7.1 0.2 8.7 16.8 12.2 13.2

2008 8.2 8.0 0.2 9.0 17.3 13.0 13.8

2009 8.0 7.4 0.2 7.8 17.7 14.4 13.5

2010 7.9 6.4 0.2 6.3 15.8 12.8 12.2

2011 7.7 6.2 0.2 4.9 14.6 11.8 9.8

2012 7.7 6.0 0.2 4.8 13.6 10.9 9.5

2013 7.5 5.4 0.2 4.8 14.1 8.1 10.1

2014 7.5 4.7 0.2 5.7 14.1 8.1 9.9

2015 8.9 4.7 0.3 6.4 4.7 6.7 11.1

2016 11.7 4.9 0.6 6.7 17.0 6.5 10.6

2017 12.2 4.7 0.6 6.7 16.0 5.7 11.8

2018 12.0 4.3 0.6 6.3 15.5 5.8 11.8

2019 12.1 3.9 0.7 6.5 14.6 6.7 11.0

Panel B: District (Max)

2002 2.5 1.7 0.3 3.9 2.0 18.5 3.3

2003 1.9 2.0 0.3 3.7 1.9 18.4 4.0

2004 2.6 1.9 0.3 3.2 1.9 15.9 3.0

2005 2.6 3.4 0.3 3.3 2.0 14.5 2.8

2006 2.6 3.3 0.3 1.4 1.6 12.6 2.0

2007 2.2 2.0 0.2 1.7 1.7 12.2 3.1

2008 2.3 2.5 0.2 1.7 2.0 13.0 3.5

2009 2.2 2.6 0.2 1.1 2.3 14.4 4.6

2010 2.1 1.8 0.2 0.7 2.1 12.8 3.6

2011 2.2 1.4 0.2 0.6 1.6 11.8 2.1

2012 2.7 1.2 0.2 0.6 1.6 10.9 2.0

2013 2.5 0.7 0.2 0.7 2.0 8.1 2.4

2014 2.0 0.7 0.2 0.7 1.6 8.1 2.0

2015 2.2 0.9 0.3 0.7 0.7 6.7 2.3

2016 2.6 0.6 0.6 0.7 2.5 6.5 2.1

2017 2.5 0.5 0.6 0.7 2.3 5.7 3.5

2018 2.4 0.5 0.6 0.6 2.0 5.8 3.8

2019 2.3 0.5 0.7 0.6 1.8 6.7 2.8

Notes: Data on world production of minerals is obtained

from the USGS Mineral Commodity Summaries. Produc-

tion data by mineral for Peru at the national and district

levels are obtained from USGS and MINEM.
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B Additional Results – Baseline Analysis

B.1 Omitted Variables

Table B.1: Neighborhood Analysis – 10 Nearest Neighbors

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

ln(Price) 0.0000 -0.0005 -0.0002** -0.0003 -0.0004

(0.0001) (0.0003) (0.0001) (0.0002) (0.0002)

M× ln(Price) 0.0011** 0.0022** 0.0007* 0.0005 0.0005

(0.0005) (0.0009) (0.0004) (0.0004) (0.0005)

Neighbor × year FEs ✓ ✓ ✓ ✓ ✓

Month FEs ✓ ✓ ✓ ✓ ✓

Observations 564110 564110 564110 564110 564110

Notes: M equals one for mining districts (production or concessions) and 0

otherwise. ln(Price) denotes the natural logarithm of the main mineral price

in month t. The main mineral in a district is determined by the (i) total pro-

duction value and (ii) count of a concession’s primary commodities. Robust

standard errors are clustered at the neighbor and month level. * p < 0.1, **

p < 0.05, *** p < 0.01.
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Table B.2: Additional Time-Varying Controls

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

M× ln(Price) 0.0004* 0.0004** 0.0003 0.0003 0.0019** 0.0019*** 0.0018** 0.0018** 0.0006** 0.0007** 0.0006** 0.0006** 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
(0.0002) (0.0002) (0.0002) (0.0002) (0.0008) (0.0007) (0.0007) (0.0007) (0.0003) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Ln(Crop price) -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004 -0.0001 0.0000 -0.0001 0.0000
(0.0004) (0.0004) (0.0009) (0.0009) (0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003)

Ln(Temperature) -0.0002 0.0001 -0.0002 0.0003 0.0000 0.0001 -0.0002 0.0000 -0.0004 0.0000
(0.0003) (0.0003) (0.0005) (0.0007) (0.0003) (0.0004) (0.0002) (0.0003) (0.0003) (0.0004)

Ln(Precipitation) 0.0000 0.0000 -0.0001 -0.0001 0.0000 0.0000 -0.0001 -0.0001 -0.0001* -0.0001
(0.0000) (0.0000) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

District × year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 94240 94240 88065 88065 94240 94240 88065 88065 94240 94240 88065 88065 94240 94240 88065 88065 94240 94240 88065 88065

Notes: M equals one for mining districts (production or concessions) and 0 otherwise. ln(Price) denotes the natural logarithm of the main mineral price in month t. The main mineral in a district is determined by the (i) total
production value and (ii) count of a concession’s primary commodities. Heteroskedasticity- and autocorrelation-corrected standard errors accounting for spatial correlation of up to 500 km and unlimited serial correlation are obtained
with the Stata module acreg (Colella et al., 2023). A linear decay in distance in the spatial correlation structure is assumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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B.2 Measurement

B.2.1 Main Mineral Price vs. Price Index

Table B.3: Price Index vs. Main Mineral Price

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M× ln(Price index) 0.0004* 0.0013** 0.0005** 0.0003 0.0002

(0.0002) (0.0005) (0.0002) (0.0002) (0.0002)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 94240 94240 94240 94240 94240

Notes: M equals one for mining districts (production or concessions) and

0 otherwise. Ln(Price index) denotes the natural logarithm of the weighted

price index in month t. Weights are computed as each mineral’s share of

the (i) total production value or (ii) count of a concession’s primary com-

modities. Heteroskedasticity- and autocorrelation-corrected standard errors

accounting for spatial correlation of up to 500 km and unlimited serial cor-

relation are obtained with the Stata module acreg (Colella et al., 2023). A

linear decay in distance in the spatial correlation structure is assumed. *

p < 0.1, ** p < 0.05, *** p < 0.01.
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B.2.2 Outcomes

Table B.4: Alternative Coding of Outcomes

Excl. “unconfirmed” events Excl. months with protester riots

Killing Arrests Injuries Arrests Injuries Casualties

(1) (2) (3) (4) (5) (6)

M× ln(Price) 0.0003 0.0002 0.0011** 0.0003* 0.0017** 0.0006**

(0.0002) (0.0001) (0.0005) (0.0002) (0.0007) (0.0002)

District × year FEs ✓ ✓ ✓ ✓ ✓ ✓

Observations 95232 94223 94185 94209 94209 94209

Notes:

M equals one for mining districts (production or concessions) and 0 otherwise. Ln(Price) denotes

the natural logarithm of the main mineral price in month t. The main mineral in a district is de-

termined by the (i) total production value and (ii) count of a concession’s primary commodities.

Heteroskedasticity- and autocorrelation-corrected standard errors accounting for spatial correla-

tion of up to 500 km and unlimited serial correlation are obtained with the Stata module acreg

(Colella et al., 2023). A linear decay in distance in the spatial correlation structure is assumed.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.5: Social Conflict vs. Event Location

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M× ln(Price) 0.0004 0.0010** 0.0003 0.0002 0.0002

(0.0003) (0.0005) (0.0002) (0.0002) (0.0002)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 94240 94240 94240 94240 94240

Notes: M equals one for mining districts (production or concessions) and

0 otherwise. Ln(Price) denotes the natural logarithm of the main mineral

price in month t. The main mineral in a district is determined by the (i) to-

tal production value and (ii) count of a concession’s primary commodities.

Heteroskedasticity- and autocorrelation-corrected standard errors account-

ing for spatial correlation of up to 500 km and unlimited serial correlation

are obtained with the Stata module acreg (Colella et al., 2023). A linear

decay in distance in the spatial correlation structure is assumed. * p < 0.1,

** p < 0.05, *** p < 0.01.
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B.2.3 Producing Districts

Table B.6: Producing Districts

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M× ln(Price) 0.0010* 0.0013 0.0006 0.0003 0.0001

(0.0005) (0.0009) (0.0004) (0.0002) (0.0003)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 40850 40850 40850 40850 40850

Notes: M equals one for mining districts (production only) and 0 oth-

erwise. Ln(Price) denotes the change in the logarithm of the main min-

eral price from month t − 1 to t. The main mineral in a district is deter-

mined exclusively by the total production value. Heteroskedasticity- and

autocorrelation-corrected standard errors accounting for spatial correlation

of up to 500 km and unlimited serial correlation are obtained with the Stata

module acreg (Colella et al., 2023). A linear decay in distance in the spa-

tial correlation structure is assumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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B.3 Econometric Specification

B.3.1 Levels vs. Differences

Figure B.1: Unit Root Test

Notes: The p-values from Dickey–Fuller tests based on each mineral-specific monthly price
series over the study period 2002–2019 are displayed. The null hypothesis is that the variable
follows a random walk with nonzero drift. Price series have been purged of their common
time components (i.e., I use the residuals from a regression of the log price on month × year
dummies). The common certainty thresholds of 5% and 10% to reject the null hypothesis are
depicted by the solid and dashed vertical lines, respectively.
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Table B.7: First Difference – Main Mineral Price

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M ×∆ ln(Price index) 0.0014 0.0028 0.0017* -0.0007 -0.0005

(0.0017) (0.0021) (0.0009) (0.0013) (0.0014)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 94240 94240 94240 94240 94240

Notes: M equals one for mining districts (production or concessions) and

0 otherwise. ∆ ln(Price) denotes the change in the natural logarithm of the

main mineral price from month t − 1 to t. The main mineral in a district is

determined by the (i) total production value and (ii) count of a concession’s

primary commodities. Heteroskedasticity- and autocorrelation-corrected stan-

dard errors accounting for spatial correlation of up to 500 km and unlimited

serial correlation are obtained with the Stata module acreg (Colella et al.,

2023). A linear decay in distance in the spatial correlation structure is as-

sumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.8: First Difference – Price Index

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M ×∆ ln(Price index) 0.0014 0.0029 0.0020** -0.0005 -0.0005

(0.0017) (0.0022) (0.0010) (0.0013) (0.0015)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 94240 94240 94240 94240 94240

Notes: M equals one for mining districts (production or concessions) and

0 otherwise. ∆ ln(Price index) denotes the change in the natural logarithm of

the weighted price index from month t− 1 to t. Weights are computed as each

mineral’s share of the (i) total production value or (ii) count of a concession’s

primary commodities. Heteroskedasticity- and autocorrelation-corrected stan-

dard errors accounting for spatial correlation of up to 500 km and unlimited

serial correlation are obtained with the Stata module acreg (Colella et al.,

2023). A linear decay in distance in the spatial correlation structure is as-

sumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.9: Spatial Lags

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

M× ln(Price) 0.0002 0.0001 0.0024** 0.0020*** 0.0008** 0.0006*** 0.0000 0.0000 -0.0001 -0.0001
(0.0002) (0.0002) (0.0011) (0.0006) (0.0004) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002)

M× ln(Price neighbors [1st degree]) 0.0006 0.0004 -0.0012 -0.0031** -0.0003 -0.0010* 0.0005* 0.0002 0.0007** 0.0006
(0.0004) (0.0003) (0.0014) (0.0013) (0.0005) (0.0005) (0.0002) (0.0002) (0.0003) (0.0004)

M× ln(Price neighbors [2nd degree]) 0.0004 0.0036*** 0.0013*** 0.0004 0.0002
(0.0003) (0.0010) (0.0004) (0.0003) (0.0004)

Cumulative effect 0.0007** 0.0009** 0.0012* 0.0026*** 0.0005 0.0010*** 0.0005 0.0006* 0.0006* 0.0006
(0.0004) (0.0004) (0.0007) (0.0008) (0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0004)

District × year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 93290 93290 93290 93290 93290 93290 93290 93290 93290 93290

Notes: M equals one for mining districts (production or concessions) and 0 otherwise. ln(Price) denotes the natural logarithm of the main
mineral price in month t. The main mineral in a district is determined by the (i) total production value and (ii) count of a concession’s primary
commodities. Heteroskedasticity- and autocorrelation-corrected standard errors accounting for spatial correlation of up to 500 km and unlimited
serial correlation are obtained with the Stata module acreg (Colella et al., 2023). A linear decay in distance in the spatial correlation structure is
assumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.10: Temporal Lags

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

M× ln(Price [t]) 0.0014 0.0010 0.0014 0.0033 0.0034 0.0049 0.0019** 0.0020** 0.0036** -0.0006 -0.0008 -0.0015 -0.0005 -0.0006 -0.0007
(0.0017) (0.0017) (0.0025) (0.0022) (0.0023) (0.0031) (0.0009) (0.0009) (0.0017) (0.0013) (0.0013) (0.0019) (0.0014) (0.0015) (0.0020)

M× ln(Price [t− 1]) -0.0011 0.0016 0.0015 -0.0015 -0.0020 -0.0025 -0.0013 -0.0016 -0.0021 0.0009 0.0019 0.0020 0.0007 0.0013 0.0013
(0.0017) (0.0026) (0.0027) (0.0021) (0.0031) (0.0032) (0.0009) (0.0013) (0.0014) (0.0013) (0.0019) (0.0020) (0.0015) (0.0022) (0.0023)

M× ln(Price [t− 2]) -0.0025 -0.0025 0.0005 0.0006 0.0003 0.0004 -0.0009 -0.0010 -0.0006 -0.0005
(0.0016) (0.0016) (0.0018) (0.0018) (0.0008) (0.0008) (0.0008) (0.0008) (0.0010) (0.0010)

M× ln(Price [t+ 1]) -0.0003 -0.0012 -0.0014 0.0007 0.0001
(0.0012) (0.0017) (0.0009) (0.0007) (0.0008)

Cumulative effect 0.0003* 0.0001 0.0001 0.0018** 0.0018** 0.0018** 0.0006** 0.0006** 0.0005* 0.0003* 0.0002* 0.0002** 0.0002 0.0002 0.0002
(0.0002) (0.0002) (0.0002) (0.0007) (0.0008) (0.0008) (0.0003) (0.0003) (0.0003) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002) (0.0001)

District × year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 94240 94240 93744 94240 94240 93744 94240 94240 93744 94240 94240 93744 94240 94240 93744

Notes: M equals one for mining districts (production or concessions) and 0 otherwise. ln(Price) denotes the natural logarithm of the main mineral price in month t. The main
mineral in a district is determined by the (i) total production value and (ii) count of a concession’s primary commodities. Heteroskedasticity- and autocorrelation-corrected standard
errors accounting for spatial correlation of up to 500 km and unlimited serial correlation are obtained with the Stata module acreg (Colella et al., 2023). A linear decay in distance
in the spatial correlation structure is assumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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B.4 Additional Robustness Checks

B.4.1 World Market Share

Table B.11: Sample of Districts with Negligible World Market Share

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M× ln(Price) 0.0004** 0.0019** 0.0006** 0.0002 0.0002

(0.0002) (0.0007) (0.0003) (0.0002) (0.0002)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 90060 90060 90060 90060 90060

Notes: M equals one for mining districts (production or concessions) and

0 otherwise. Ln(Price) denotes the natural logarithm of the main mineral

price in month t. The main mineral in a district is determined by the (i) to-

tal production value and (ii) count of a concession’s primary commodities.

Heteroskedasticity- and autocorrelation-corrected standard errors account-

ing for spatial correlation of up to 500 km and unlimited serial correlation

are obtained with the Stata module acreg (Colella et al., 2023). A linear

decay in distance in the spatial correlation structure is assumed. * p < 0.1,

** p < 0.05, *** p < 0.01.
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B.4.2 Spatial Kernel

Table B.12: Alternative Levels of Spatial Clustering

Force used against protesters Protester behavior

Arrests Injuries Casualties Violence Riots

(1) (2) (3) (4) (5)

M× ln(Price) 0.0004 0.0019 0.0007 0.0002 0.0002

distance: 50 (0.0002)** (0.0007)*** (0.0003)*** (0.0002) (0.0002)

distance: 100 (0.0002)* (0.0007)*** (0.0003)*** (0.0002) (0.0002)

distance: 250 (0.0002)** (0.0007)*** (0.0003)** (0.0002) (0.0002)

distance: 500 (0.0002)** (0.0007)*** (0.0003)** (0.0002) (0.0002)

distance: 750 (0.0002)** (0.0007)*** (0.0003)** (0.0002) (0.0002)

distance: 1000 (0.0002)** (0.0007)*** (0.0003)** (0.0002) (0.0002)

District × year FEs ✓ ✓ ✓ ✓ ✓

Observations 94240 94240 94240 94240 94240

Notes: M equals one for mining districts (production or concessions) and 0

otherwise. ln(Price) denotes the natural logarithm of the main mineral price in

month t. The main mineral in a district is determined by the (i) total production

value and (ii) count of a concession’s primary commodities. Heteroskedasticity-

and autocorrelation-corrected standard errors accounting for spatial correlation of

up to the stated distance (in km) and unlimited serial correlation are obtained

with the Stata module acreg (Colella et al., 2023). A linear decay in distance in

the spatial correlation structure is assumed. * p < 0.1, ** p < 0.05, *** p < 0.01.
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B.4.3 Multiple Hypothesis Correction

Table B.13: Romano–Wolf (Multiple Hypothesis Testing–Adjusted) P-Values

Outcome
Model

p-value

Resampled

p-value

Romano-Wolf

p-value

Arrests 0.045 0.008 0.088

Injuries 0.010 0.044 0.088Force used against protesters

Casualties 0.011 0.074 0.088

Violence 0.220 0.172 0.172
Protester behavior

Riots 0.343 0.100 0.112

Notes: The Romano–Wolf p-values adjusted for multiple hypothesis testing

are calculated with the resampled null distribution from 500 bootstrap samples

with the Stata command rwolf (Clarke et al., 2020).
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Figure B.2: Null Distributions and Original T Statistics

Notes: Each panel documents the null distributions used for the calculation of the Romano–Wolf
adjusted p-values for each of the 5 baseline dependent variables. The Romano–Wolf adjusted
p-values are calculated with the Stata command rwolf (Clarke et al., 2020) and displayed below
each panel. The histogram in each panel depicts the stepdown resampled null distribution from
500 bootstrap samples. The dashed line captures the theoretical half-normal, and the solid
vertical line presents the original t statistic corresponding to each outcome.
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C Violence, Corruption, and Democratic Account-

ability

C.1 Manipulation Test

Figure C.1: Manipulation Test – Pro- vs. Anti-Mining Candidates
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* P−value for bias−corrected density test = .42
** Triangular kernel

Notes: This figure presents the manipulation test suggested by Cattaneo et al. (2018) and
implemented in the Stata command rddensity using a quadratic polynomial and triangular
kernel weights. The p-value for the bias-corrected density test is 0.36. The p-values using a
polynomial of degrees 1 and 3 are 0.40 and 0.59, respectively.
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C.2 RDD Tables

Table C.1: Smooth covariates near the cut-off

Obs. Mean SD Coef. SE p-value BW obs.
(1) (2) (3) (4) (5) (6) (7)

A. Individual covariates
Women 236 0.051 0.22 0.059 0.085 0.578 137
Incumbency Advantage
Women (Police violence = “No”) 4769 0.045 0.208 -0.016 0.018 0.295 2850
Women (Police violence = “Yes”) 160 0.045 0.208 -0.024 0.132 0.884 109

B. Political covariates
Political competition 235 4.8 1.49 -0.874 0.648 0.157 106
Participation 236 82.7 6.1 5.39 3.3 0.045 96
Canon minero 232 0.952 3.82 -0.138 0.596 0.255 71
Royalties 232 0.313 1.42 -0.078 0.426 0.966 53

C. Other municipality socioeconomic characteristics
Nighttime lights 231 2.26 3.59 -1.33 1.05 0.144 94
Area 235 701 1459 -21.7 279 0.768 90
Elevation 235 3424 1195 409 466 0.402 115
Population density 235 28.9 110 -43.2 21.1 0.072 88
Total population 236 8747 11000 -742 3140 0.844 75
Indigenous population density 235 0.001 0.006 -0.004 0.005 0.317 147
Road density 235 0.058 0.084 -0.002 0.031 0.846 116
River density 235 0.267 0.074 -0.018 0.047 0.585 156
Proportion of native land 235 0.002 0.012 -0.008 0.009 0.321 147
Proportion of indigenous land 235 0 0 0 0 0.958 81
Proportion of lakes 235 0.423 1.18 0.686 0.532 0.11 120

Notes: The first three columns present the basic statistics for the entire sample (total number
of observations, mean, and standard deviation) of each covariate. Column 4 reports the RDD’s
point estimate of the effect of a pro-mining candidate victory on each covariate (as the dependent
variable). Following Cattaneo et al. (2020), the MSE optimal bandwidth is calculated for each
covariate. Bias-corrected robust standard errors adjusted for clustering at the regional level are
reported in column 5. Column 6 reports the estimated p-value and the number of effective obser-
vations is detailed in column 7. Row 2 and 3 in Panel A present estimates for the “incumbency
advantage” sample divided by no police violence (row 2) and at least 1 incidence of police violence
(row 3) during the elected mayor’s term. All remaining rows present estimates for the “pro- vs.
anti-mining candidate” sample.
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Table C.2: Pro-Mining local politicians and corruption and police violence during term in office

Police Violence Corruption case Case at stage 1 Case at stage 2 or 3

(1) (2) (3) (4) (5) (6) (7) (8)

Police violence 0.110** 0.110 0.150 0.212 0.221** 0.258 -0.026 -0.038
Cluster-robust p-value 0.041 0.269 0.176 0.194 0.047 0.180 0.801 0.833
90% CI [ 0.026,0.243] [-0.055,0.282] [-0.047,0.482] [-0.063,0.536] [ 0.044,0.472] [-0.063,0.614] [-0.301,0.221] [-0.365,0.282]

No. of obs. 236 236 236 236 236 236 236 236
Bandwidth obs. 113 133 111 135 120 140 103 135
Dep. var. mean 0.06 0.06 0.14 0.14 0.09 0.09 0.05 0.05
Effect mean (%) 186.44 186.44 104.17 147.22 237.63 277.42 -50.98 -74.51
Bandwidth (left/right) {7.9; 18} {13.8; 19} {10.2; 15} {13.7; 20} {7.1; 23} {11.8; 28} {12.8; 12} {17.7; 16}
(Local) polynomial order 1 2 1 2 1 2 1 2

Notes: Even columns present the local linear estimates of average treatment effects at the cutoff estimated with triangular kernel weights and
optimal MSE bandwidth. Odd columns quadratic estimates of average treatment effects at the cutoff estimated with triangular kernel weights and
optimal MSE bandwidth. Ninety percent robust confidence intervals and p-values adjusted for clustering at the state level are computed following
Calonico et al. (2014). Bandwidth obs. denotes the number of observations in the optimal MSE bandwidth. The effect size (%) is computed as the
point estimate over the dependent variable mean × 100. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C.3: Summary Statistics – Incumbency Advantage

Winner Runner-up

N Mean SD N Mean SD Diff p-value

A: No Police Violence during Term after Election
Female Candidate 2398 0.036 0.186 2372 0.056 0.230 0.020 0.001
Ran for mayor in next election 2398 0.358 0.479 2372 0.541 0.498 0.184 0.000
Elected mayor in next election 2398 0.123 0.328 2372 0.242 0.429 0.120 0.000
Elected mayor conditional on rerunning 858 0.343 0.475 1280 0.449 0.498 0.107 0.000
Difference in vote share (%) 858 -0.250 11.332 1283 0.186 11.197 0.436 0.381

B: Police Violence during Term after Election
Female Candidate 80 0.013 0.112 80 0.050 0.219 0.038 0.176
Ran for mayor in next election 80 0.325 0.471 80 0.625 0.487 0.300 0.000
Elected mayor in next election 80 0.087 0.284 80 0.275 0.449 0.188 0.002
Elected mayor conditional on rerunning 26 0.269 0.452 50 0.440 0.501 0.171 0.138
Difference in vote share (%) 26 -0.078 7.584 50 -0.024 10.905 0.054 0.980

Notes: This sample comprises 4,930 mayoral candidates who either won or were the runner-up. The
sample is divided into terms of the elected mayor that were characterized by (a) no police violence and (b)
at least one incidence of excessive force against protesters. “Ran for mayor in next election” takes value 1 if
the mayoral candidate in t ran again for mayor in t+ 1, and 0 otherwise. “Elected mayor in next election”
takes value 1 if a politician ran for mayor in t, ran again in t+ 1 and won; it takes value 0 if the candidate
either lost or failed to run for mayor in t + 1. “Elected mayor conditional on rerunning” takes value 1 if a
politician ran for mayor in t, ran again in t + 1 and won; it takes value 0 if the candidate ran in t + 1 and
lost (coded as missing if candidate failed to run for mayor in t+ 1). “Difference in vote share (%)” denotes
the difference in the share of votes for the mayoral candidates that reran for mayor in t+ 1 (coded as miss-
ing if candidate failed to run for mayor in t + 1). Column 7 presents the difference in mean estimates; the
corresponding p-value from a two-sided t-test is presented in column 8.
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Table C.4: The effect of political violence on the incumbency effect

Ran in next election Elected mayor in next election

RDD RDD Diff RDD RDD Diff RDD RDD Diff RDD RDD Diff

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Incumbancy Advantage -0.271*** -0.131 0.140 -0.261*** -0.117 0.144 -0.245*** -0.030 0.215 -0.243*** -0.130 0.113
p-value 0.000 0.682 0.560 0.000 0.652 0.587 0.000 0.879 0.286 0.000 0.345 0.594
90% CI [-0.340,-0.206] [-0.485, 0.291] [-0.333,-0.174] [-0.545, 0.311] [-0.298,-0.194] [-0.358, 0.298] [-0.297,-0.188] [-0.540, 0.146]

No. of obs. 4769 160 4769 160 4769 160 4769 160
Bandwidth obs. 3232 104 3660 128 3024 99 4041 114
Dep. var. mean 0.45 0.48 0.45 0.48 0.18 0.18 0.18 0.18
Effect mean (%) -60.36 -27.58 -58.13 -24.63 -134.62 -16.57 -133.52 -71.82
Bandwidth (left/right) {11.4; 9.5} {9.8; 10.9} {13.9; 12.7} {16.6; 18.3} {10.6; 8.5} {10.0; 9.2} {21.2; 13.7} {11.0; 14.6}
(Local) polynomial order 1 1 1 2 2 2 1 1 1 2 2 2
Police Violence No Yes No Yes No Yes No Yes

Notes: Columns 1-2 and 7-8 present local linear estimates of average treatment effects at the cutoff estimated with triangular kernel weights and optimal MSE bandwidth. Columns 4-5
and 10-11 quadratic estimates of average treatment effects at the cutoff estimated with triangular kernel weights and optimal MSE bandwidth.Ninety percent robust confidence intervals
and p-values adjusted for clustering at the state level are computed following Calonico et al. (2014). Bandwidth obs. denotes the number of observations in the optimal MSE bandwidth.
The effect size (%) is computed as the point estimate over the dependent variable mean × 100. Statistical tests of differences are calculated using a two-tailed Z-test (Paternoster et al.,
1998). The one-sided p-values that the estimated difference is ≤ 0 are 0.28, 0.29, 0.14, and 0.30 for columns 3, 6, 9, and 12, respectively. * p < 0.1, ** p < 0.05, *** p < 0.01.
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D Dynamic Causal Inference

D.1 Technical Appendix

D.1.1 Marginal Structural Models

Using the set-up introduced in Section with i = 1, ..., N social conflicts, each spanning t =

1, ..., Ti 3-month periods, where in each time period of the conflict local authorities decide

to use excessive force against protesters (Ait = 1) or not (Ait = 0), let at ≡ (a1, ..., at)

be the realized action sequence of Ait (e.g., a3 = {a1 = 0; a2 = 1; a3 = 0}) and a a

representative history of excessive force use. Each representative history a is associated

with a different potential outcome Y (a). Consequently, there exist 2T different potential

action sequences a and potential outcomes, but we observe only one realization for each

conflict. The remaining potential outcomes are counterfactuals. Marginal structural

models (MSMs) break this curse of dimensionality by assuming a parametric form for the

mean of the potential outcome:

E [Y (a)] = g (a; β) (D.1)

while leaving the rest of the distribution of Y (a) unspecified (Blackwell, 2013). Intuitively,

MSMs assume that “similar” actions lead to “similar” outcomes.

The challenge is that, if there exist omitted variables that affect both treatment

and outcome, simply controlling for them in standard regression models will not lead

to unbiased estimates if the the time-varying confounders are themselves affected by

past actions (post-treatment bias). Fortunately, Robins et al. (2000) show that, under

the assumptions of sequential ignorability (“no unmeasured confounders”) and positivity,

estimating an inverse probability of treatment reweighted version of (D.1) will recover the

unbiased (treatment) effect. The (unstabilized) inverse probability of treatment weights

(IPTW) in each time period are defined as44:

Wit =
1

Pr
(
Ait|Ait−1, X it.

) (D.2)

The overall weight for each social conflict is then calculated as:

Wi =
T∏
t=1

Wit. (D.3)

A common approach of modeling the probability of police violence is to estimate a

44For the stabilized version of the IPTW, please refer to equation (4).
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logit model:

Pr
(
Ait = 1|Ait−1, X it

)
=
[
1 + exp

{
−h
(
Ait−1, X it

)}]−1
, (D.4)

where h is a linear additive function of the action and covariate history.

Two common forms of the linear additive function of the MSM in either a logit or a

linear probability model are:

logit−1 Pr (yi = 1|Ai, X i)) = yi = β0 + β1

(
T∑
t=1

Ait

)
+ β2Xi1 (D.5)

or logit−1 Pr (yi = 1|Ai, X i)) = yi = β0 + β11∑T
t=1 Ait>0 + β2Xi1, (D.6)

where 1∑T
t=1 Ait>0 is a binary indicator that equals one if any police violence was observed

during social conflict i and
∑T

t=1Ait is equal to the total number of time periods with

at least one incident of police violence over the course of the conflict; Xi1 is the set of

baseline covariates prior to the start of the conflict and comprises all baseline covariates

considered in the standard IPTW logit model (see Table D.1).

D.1.2 LASSO

I estimate inverse probability weights using a logit–LASSO model. The logistic lasso

estimator β̂ = β̂1, ..., β̂p is defined as the minimizer of the penalized negative log likelihood

(also called “logistic loss” function):

β̂ = argmin
β

{
−

[
1

N

N∑
i=1

yit ·
(
XT

itβ
)
− log

(
1 + eX

T
itβ
)]

︸ ︷︷ ︸
logistic loss function

+λ

p∑
j=1

|βj|︸ ︷︷ ︸
L1 penalty

}
, (D.7)

where yit is the binary indicator for police violence and λ is the “L1 penalty” (or “L1

norm”) weight applied to the coefficient values for each standardized variable in the

covariate matrix Xit comprising all potential predictors of police violence. Intuitively,

the higher λ the more coefficients of irrelevant features are pushed towards zero, with the

weakest predictors being pushed all the way to zero. Logit–LASSO models thus implicitly

conduct automated feature selection. I use the glmnet (Friedman et al., 2010) R package

to implement the logit–LASSO model.

The optimal value of λ (λ∗) is identified to minimize the out-of-sample logarithmic loss

using 10-fold cross-validation repeated 10 times.45 Application of oversampling algorithms

such as ROSE (Menardi and Torelli, 2014; Lunardon et al., 2014) and SMOTE (Chawla

45The repetitions ensure that the stochasticity in the 10-fold cross-validation split does not significantly
affect the results. I use the vfold cv function of the tidymodels (Kuhn and Wickham, 2020) R package
to implement the k-fold cross-validation.
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et al., 2011) to address the class imbalance in the data did not improve the out-of-sample

fit of the logit–LASSO model and are not reported.

I compute the probability of police violence for each social conflict as the predicted

value from the fitted coefficients β̂ at λ∗.

D.1.3 Gradient Boosting Machines

Gradient boosting machines (GBM) are among the most popular machine learning algo-

rithms. In contrast to random forest, GBM builds trees sequentially and not independently

such that each new tree improves the predictive power of the the ensemble of trees. Intu-

itively, GBM boosts its performance by sequentially building new trees that specifically

try to correct poorly predicted observations in previous trees.

Formally, at each stage m, boosting solves:

Θ̂m = argmin
Θm

N∑
i=1

L (yi, fm−1(X1) + Tm(Xi; Θm)) , (D.8)

where fm1(Xi) is the value of the sum of trees that was estimated in the first m−1 stages

(Montgomery and Olivella, 2018). GBM provides an accurate and fast approximation

of the optimization problem in (D.8). Specifically, GBM fits a new tree to the negative

gradient of the loss function −gm, i.e.,

Θ̂m = argmin
Θm

N∑
i=1

L (−gim − Tm(Xi; Θm))
2 , (D.9)

where gim is the ith component of gm. Let gm = δL (yi, fm−1(X1)) /δfm−1(X1 be the

gradient of the loss function at stage m; then, gm is a vector pointing in the direction

of the most steeply increasing loss (Montgomery and Olivella, 2018). Intuitively, the

optimal path for a skier to win the race is to choose the path with the steepest slope.

One of the key parameters in gradient descent is the size of the steps, which is con-

trolled by the learning rate. On the one hand, if the chosen learning rate is too small,

then the algorithm will take many steps to find the minimum, increasing computation

time. On the other hand, if the chosen learning rate is too high, the algorithm might miss

the global minimum, negating efficiency gains in computation time. Moreover, if the loss

function is not convex, the algorithm might end up at a local minimum or plateau in lieu

of the global minimum. Stochastic gradient descent addresses the latter by growing the

next tree using a randomly drawn subsample of the training data. While the stochasticity

does not allow the algorithm to reach the absolute global minimum, it is less susceptible

to local minimums or plateaus.

The following paragraph discusses the main hyperparameters for tuning the extreme

gradient boosting (XGBoost) algorithm (Chen and Guestrin, 2016) made available in
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the tidymodels (Kuhn and Wickham, 2020) R package, an optimized gradient boosting

library that allows the user to set additional hyperparameters to avoid overfitting or

account for class imbalance.

scale pos weight Balance the positive and negative weights. Value set to recommended

sum of majority class instances divided by sum of minority class instances.46

trees Reports the total number of trees in the sequence.

tree depth Controls the depth of the individual trees. Smaller trees are computationally

efficient and less prone to overfitting but may miss important variable interactions.

min n Reports the minimum number of observations in terminal nodes. Higher val-

ues safeguard against overfitting, but lower values can be beneficial in imbalanced

datasets.

loss reduction Specifies a minimum loss reduction required to make a further partition

on a leaf node of the tree.

mtry Subsampling of predictors in every boosting iteration. Higher values are beneficial

if there are fewer relevant predictors or strong multicollinearity.

sample size Conducts random sampling of rows for each tree in the sequence. Higher

values reduce overfitting.

learn rate Determines the contribution of each tree to the final outcome and controls

how quickly the algorithm proceeds down the gradient descent.

The optimal hyperparameter combination is identified to minimize the out-of-sample

logarithmic loss using 10-fold cross-validation. To allow an efficient search for the appro-

priate set of tuning parameters, the 10-fold cross-validation is repeated 5 times, and I use a

space-filling Latin hypercube grid search design implemented with the grid latin hypercube

function of the dials R library covering 250 parameter value combinations. Intuitively,

the Latin hypercube design finds a configuration of points that covers the parameter

space with the smallest chance of overlapping.

46https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html.
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D.1.4 Covariates Included in Predictive Models of Police Violence

Table D.1: Covariates included in Predictive Models of Police Violence

Variable description Type Frequency GLM LASSO XGBoost

Time-varying

Police violencet−1 Binary Period ✓ ✓ ✓

Police violencet−2 Binary Period ✓ ✓ ✓

Police violencet−3 Binary Period ✓ ✓ ✓

Protestt Binary Period ✓ ✓ ✓

Protestt−1 Binary Period ✓ ✓ ✓

Protestt−2 Binary Period ✓ ✓ ✓

Protestt−3 Binary Period ✓ ✓ ✓

Protester riotst Binary Period ✓ ✓ ✓

Protester riotst−1 Binary Period ✓ ✓ ✓

Protester riotst−2 Binary Period ✓ ✓ ✓

Protester riotst−3 Binary Period ✓ ✓ ✓

Crop pricet Continuous Period ✓ ✓

Crop pricet−1 Continuous Period ✓ ✓

Crop pricet−2 Continuous Period ✓ ✓

Precipitationt Continuous Period ✓ ✓

Precipitationt−1 Continuous Period ✓ ✓

Precipitationt−2 Continuous Period ✓ ✓

Mineral pricet Continuous Period ✓ ✓ ✓

Mineral pricet−1 Continuous Period ✓ ✓ ✓

Mineral pricet−2 Continuous Period ✓ ✓

Temperaturet Continuous Period ✓ ✓

Temperaturet−1 Continuous Period ✓ ✓

Temperaturet−2 Continuous Period ✓ ✓

Conflict length Discrete Period ✓ ✓ ✓

Relative time period Discrete Period ✓ ✓ ✓

Relative time period × Discrete Period ✓ ✓ ✓

Conflict length

Log(Canon minero)t−1 Continuous Year ✓ ✓

Log(Royalties)t−1 Continuous Year ✓ ✓

Night Lightst−1 Continuous Year ✓ ✓

Year Nominal Year ✓ ✓ ✓
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Table D.1: Covariates included in predictive models of police violence (continued)

Variable description Type Frequency GLM LASSO XGBoost

Baseline

Indigenous Binary Constant ✓ ✓ ✓

Canon minero Continuous Constant ✓ ✓

Elevation Continuous Constant ✓ ✓

Leverage Continuous Constant ✓ ✓

Log(Canon minero) Continuous Constant ✓ ✓

Log(Market value) Continuous Constant ✓ ✓

Log(Population) Continuous Constant ✓ ✓

Log(Royalties) Continuous Constant ✓ ✓

Log(Size) Continuous Constant ✓ ✓

Market value Continuous Constant ✓ ✓

Night light density Continuous Constant ✓ ✓

Night lights Continuous Constant ✓ ✓

Indigenous area (%) Continuous Constant ✓ ✓

Native area (%) Continuous Constant ✓ ✓

Lake area (%) Continuous Constant ✓ ✓

Population density Continuous Constant ✓ ✓

Indigenous population density Continuous Constant ✓ ✓

River density Continuous Constant ✓ ✓

Road density Continuous Constant ✓ ✓

Royalties Continuous Constant ✓ ✓

Majority owner location Nominal Constant ✓ ✓ ✓

Altitude Nominal Constant ✓ ✓ ✓

Canon minero Nominal Constant ✓ ✓ ✓

Elevation Nominal Constant ✓ ✓ ✓

Leverage Nominal Constant ✓ ✓ ✓

Market capitalization Nominal Constant ✓ ✓ ✓

Market value Nominal Constant ✓ ✓ ✓

Night light density Nominal Constant ✓ ✓ ✓

Night lights Nominal Constant ✓ ✓ ✓

Indigenous area (%) Nominal Constant ✓ ✓ ✓

Native area (%) Nominal Constant ✓ ✓ ✓

Lake area (%) Nominal Constant ✓ ✓ ✓

Population Nominal Constant ✓ ✓ ✓

Population density Nominal Constant ✓ ✓ ✓
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Table D.1: Covariates included in predictive models of police violence (continued)

Variable description Type Frequency GLM LASSO XGBoost

Indigenous population density Nominal Constant ✓ ✓ ✓

River density Nominal Constant ✓ ✓ ✓

Road density Nominal Constant ✓ ✓ ✓

Royalties Nominal Constant ✓ ✓ ✓

Size Nominal Constant ✓ ✓ ✓

D.2 Model Performance

Table D.2 presents the out-sample fit statistics for the three algorithms under considera-

tion. Fit statistics are calculate on 20% of the original data set.47 The first three columns

show that the predictions are highly correlated across models. Figure D.1 corroborates

this assertion. The predicted probabilities across algorithms exhibit comparable distribu-

tions for both true positives and true negatives. However, small differences in predictions

can have substantial effects on the distribution of final weights (see Figure 5). Further-

more, while the predicted probabilities seem to be well behaved for true negatives with

the probability mass close to 0 across algorithms, the predictions for true positives show

more variations across algorithms. Visual inspection of the probability distributions for

true positives and negatives for each algorithm suggests that the logit–LASSO model

provides the best results avoiding extreme values. This observation is substantiated with

the logit–LASSO model having the lowest Brier score and log loss (cross-entropy loss);

the two statistics using probabilities as opposed to class labels—as in the the case of bal-

anced accuracy and the area under the receiver operator curve (AUC ROC)—to measure

the fit of the model.

47The original split of the data in training and test set uses stratified sampling to account for the
imbalance in the data set.
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Table D.2: Predictive Out-of-Sample Fit Statistics for Competing Models

Pairwise correlation Out-of-sample fit statistics

GLM LASSO XGBoost
Balanced

accuracy

Brier

score

AUC

ROC

Log

loss

GLM 1.000 0.591 0.515 0.594 0.030 0.717 0.370

LASSO 0.591 1.000 0.535 0.500 0.022 0.655 0.108

XGBoost 0.515 0.535 1.000 0.594 0.028 0.564 0.134

Notes: Predictive fit statistics for the logistic regression model (GLM),

LASSO-logit model (Lasso), and gradient boosting machine are presented

using 20% from the original dataset that was left out of the training pro-

cess. Higher values for the balanced accuracy score (Bal. Accuracy) and

the area under the receiver operator curve (AUC ROC) indicate superior

fit. Lower values for the Brier score and the logarithmic loss (log loss)

indicate superior fit.
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Figure D.1: Distribution of Predicted Probabilities

Notes: The distribution of predicted probabilities for 20% of the original data set left out
during the training process across algorithms is displayed with the left, respectively right panel
presenting predicted probabilities for true positives (Yes) and true negatives (No).
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D.3 Directed Acyclic Graphs (DAGs)

Figure D.2: Dynamic Causal Inference

Use of force1

Protest1

Use of force2

Protest2

End of conflict

Time-varying confounder

Action sequence Outcome

Notes: Each arrow represents a causal relationship.

Figure D.3: Sequential Ignorability Assumption

X1 A1 X2 A2 Y

(a) Sequential ignorability holds.

X1 A1 X2 A2 Y

U1 U2

(b) Sequential ignorability fails to hold.
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